work
|
collinear force | 30 N (newtons)
distance | 100 meters
work | 3 kJ (kilojoules)
= 0.8333 W h (watt hours)
= 2.843 BTU_IT (IT British thermal units)
= 3000 J (joules)
W = F d |
W | work
F | collinear force
d | distance

Maxwell speed distribution probability
|
temperature | 800 K (kelvins)
mass of molecule | neon (chemical element) (atomic mass): 20.1797 u (unified atomic mass units)
minimum velocity | 500 m/s (meters per second)
maximum velocity | 1000 m/s (meters per second)
Statistical Physics
Pr = -sqrt(2/Ο) sqrt(m/(k T)) (e^(-(m v_max^2)/(2 k T)) v_max - e^(-(m v_min^2)/(2 k T)) v_min) + erf((sqrt(m/(k T)) v_max)/sqrt(2)) - erf((sqrt(m/(k T)) v_min)/sqrt(2)) | |
Pr | probability
m | mass of the molecule
T | temperature
v_min | minimum velocity
v_max | maximum velocity
k | Boltzmann constant (≈ 1.381×10^-23 J/K)
v_mp = sqrt(2) sqrt((k T)/m) | v_rms = sqrt(3) sqrt((k T)/m)
v^_ = 2 sqrt(2/Ο) sqrt((k T)/m) | |
m | mass of the molecule
T | temperature
v_mp | maximum probability speed
v_rms | root mean square speed
v^_ | mean speed
k | Boltzmann constant (≈ 1.381×10^-23 J/K)
Probability density function
P(v) = sqrt(2/Ο) v^2 sqrt(m^3/(k^3 T^3)) e^(-(m v^2)/(2 k T))
No comments:
Post a Comment