centripetal acceleration
|
tangential speed | 30 mph (miles per hour)
radius | 500 feet
centripetal acceleration | 118 cm/s^2 (centimeters per second squared)= 3.872 ft/s^2 (feet per second squared)
= 9504 mi/h^2 (miles per hour squared)
= 1.18 m/s^2 (meters per second squared)
a | centripetal acceleration
v | tangential speed
r | radius
gravitational acceleration
g = (G M)/r^2 |
g | gravitational acceleration
M | mass
r | radius
G | Newtonian gravitational constant (≈ 6.674×10^-11 m^3/(kg s^2))
mass | Earth (planet) (mass): 5.97×10^24 kg (kilograms) radius | Earth (planet) (average radius): 6371.009 km (kilometers)
gravitational acceleration | 9.82 m/s^2 (meters per second squared) = 32.22 ft/s^2 (feet per second squared)
= 982 cm/s^2 (centimeters per second squared)
escape
velocity | 11.19 km/s (kilometers per second)
11190 m/s (meters per second)
25020 mph (miles per hour)
damped harmonic oscillator (physical system)
Degrees of freedom 1S(t_1, t_2) = integral_(t_1)^(t_2) exp(2 ζ ω_0 τ) (1/2 m x'(τ)^2 - 1/2 m ω_0^2 x(τ)^2) dτ
L = exp(2 ζ ω_0 t) (1/2 m x'(t)^2 - 1/2 m ω_0^2 x(t)^2)
x(t) = e^(ζ (-t) ω_0) ((x'(0) sinh(α t))/α + x(0) ((ζ ω_0 sinh(α t))/α + cosh(α t)))
with
α = sqrt(-1 + ζ^2) ω_0
ℋ = exp(-2 ζ ω_0 t) p(t)^2/(2 m) + exp(2 ζ ω_0 t) 1/2 m ω_0^2 x(t)^2
x'(t) = exp(-2 ζ ω_0 t) p(t)/m |
p'(t) = -exp(2 ζ ω_0 t) m ω_0^2 x(t)
x(t) = e^(ζ (-t) ω_0) ((p(0) sinh(α t))/(α m) + x(0) ((ζ ω_0 sinh(α t))/α + cosh(α t)))
with
α = sqrt(-1 + ζ^2) ω_0
p(t) = e^(ζ t ω_0) (p(0) (cosh(α t) - (ζ ω_0 sinh(α t))/α) - (m x(0) ω_0^2 sinh(α t))/α)
with
α = sqrt(-1 + ζ^2) ω_0
p(t) = m e^(2 ζ t ω_0) x'(t)
T = (2 π)/(sqrt(1 - ζ^2) ω_0) for abs(ζ)
No comments:
Post a Comment