Friday, July 18, 2025

x̄ - > Sacheri quadrilateral and euclidean proposition

Saccheri Quadrilateral & Euclidean Propositions

🟑 Geometric Truths in Classical Light

Congruent Diagonals in a Saccheri Quadrilateral

Let us wander through neutral geometry, where postulates pause and theorems bloom from symmetry. Consider a Saccheri quadrilateral \(ABCD\), with:

  • Base \( \overline{AB} \)
  • Summit \( \overline{CD} \)
  • Right angles at \( A \) and \( B \)
  • Legs \( \overline{AD} \cong \overline{BC} \)

Draw the diagonals \( \overline{AC} \) and \( \overline{BD} \).

Consider triangles \( \triangle ABC \) and \( \triangle ABD \):
Side: \( \overline{AB} \cong \overline{AB} \) (common side).
Angle: \( \angle ABC \cong \angle BAD \) (both are right).
Side: \( \overline{BC} \cong \overline{AD} \) (given).
Thus, by SAS, \( \triangle ABC \cong \triangle ABD \).

Therefore, \( \overline{AC} \cong \overline{BD} \). The diagonals are equal. A harmony of lines sung across a summit.


🟒 Question 11: Do Rectangles Exist in Euclidean Geometry?

A rectangle—four corners of perfect rightness. Let us construct one: Start with segment \( \overline{AB} \), erect perpendiculars \( L_1 \) and \( L_2 \) through \( A \) and \( B \).

By the Euclidean Parallel Postulate, these lines are parallel. Pick point \( D \) on \( L_1 \) and construct a line parallel to \( \overline{AB} \), meeting \( L_2 \) at \( C \).

Thus, \( \angle A, B, C, D \) are all right angles.

Therefore, rectangles exist in the Euclidean realm.


πŸ”΅ Question 12: Euclidean Propositions

(a) Supplementary Angles on Parallel Lines

Given: \( \overleftrightarrow{BA} \parallel \overleftrightarrow{CD} \), and \( A \), \( D \) lie on the same side of \( \overleftrightarrow{BC} \).
By Euclid’s 5th Postulate: \( m(\angle ABC) + m(\angle BCD) = 180^\circ \)

(b) Common Perpendicular for Parallel Lines

Given parallel lines \( L_1 \parallel L_2 \), construct perpendicular \( L_3 \) from point on \( L_1 \).
By geometry’s grace, \( L_3 \) intersects \( L_2 \) perpendicularly. A shared spine.

(c) Alternate Interior Angles Are Congruent

Parallel lines \( L_1 \parallel L_2 \), cut by transversal \( T \), form:
\( \angle 1 \cong \angle 2 \), like twin reflections.

(d) Triangle Angle Sum Theorem

In \( \triangle ABC \), draw a line through \( A \) parallel to \( \overline{BC} \):
\( \angle A = \angle 3 \), \( \angle B = \angle 2 \), \( \angle C = \angle 1 \).
Together they lie on a straight line: \[ m(\angle A) + m(\angle B) + m(\angle C) = 180^\circ \]


πŸ”Ί Question 13: The Exterior Angle Theorem with Justification

Any exterior angle of a triangle exceeds either remote interior angle.

Let \( \angle BCD \) be exterior to \( \triangle ABC \).
Construct midpoint \( M \) of \( \overline{BC} \), and reflect point \( A \) across \( M \) to obtain point \( E \) such that \( MA = ME \).

\( \triangle AMB \cong \triangle EMC \) by SAS:
\( \overline{BM} \cong \overline{MC} \), \( \angle AMB \cong \angle EMC \), \( \overline{MA} \cong \overline{ME} \).
So \( \angle ABC \cong \angle ECB \), and since \( \angle BCD = \angle ECB + \angle ECD \), we have: \[ m(\angle BCD) > m(\angle ABC) \]

Q.E.D. The exterior angle casts a longer shadow than those within.


“Geometry is the art of reasoning well from poorly drawn figures.” — Anonymous

No comments:

Meet the Authors
Zacharia Maganga’s blog features multiple contributors with clear activity status.
Active ✔
πŸ§‘‍πŸ’»
Zacharia Maganga
Lead Author
Active ✔
πŸ‘©‍πŸ’»
Linda Bahati
Co‑Author
Active ✔
πŸ‘¨‍πŸ’»
Jefferson Mwangolo
Co‑Author
Inactive ✖
πŸ‘©‍πŸŽ“
Florence Wavinya
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Esther Njeri
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Clemence Mwangolo
Guest Author

x̄ - > Bloomberg BS Model - King James Rodriguez Brazil 2014

Bloomberg BS Model - King James Rodriguez Brazil 2014 πŸ”Š Read ⏸ Pause ▶ Resume ⏹ Stop ⚽ The Silent Kin...

Labels

Data (3) Infographics (3) Mathematics (3) Sociology (3) Algebraic structure (2) Environment (2) Machine Learning (2) Sociology of Religion and Sexuality (2) kuku (2) #Mbele na Biz (1) #StopTheSpread (1) #stillamother #wantedchoosenplanned #bereavedmothersday #mothersday (1) #university#ai#mathematics#innovation#education#education #research#elearning #edtech (1) ( Migai Winter 2011) (1) 8-4-4 (1) AI Bubble (1) Accrual Accounting (1) Agriculture (1) Algebra (1) Algorithms (1) Amusement of mathematics (1) Analysis GDP VS employment growth (1) Analysis report (1) Animal Health (1) Applied AI Lab (1) Arithmetic operations (1) Black-Scholes (1) Bleu Ranger FC (1) Blockchain (1) CATS (1) CBC (1) Capital markets (1) Cash Accounting (1) Cauchy integral theorem (1) Coding theory. (1) Computer Science (1) Computer vision (1) Creative Commons (1) Cryptocurrency (1) Cryptography (1) Currencies (1) DISC (1) Data Analysis (1) Data Science (1) Decision-Making (1) Differential Equations (1) Economic Indicators (1) Economics (1) Education (1) Experimental design and sampling (1) Financial Data (1) Financial markets (1) Finite fields (1) Fractals (1) Free MCBoot (1) Funds (1) Future stock price (1) Galois fields (1) Game (1) Grants (1) Health (1) Hedging my bet (1) Holormophic (1) IS–LM (1) Indices (1) Infinite (1) Investment (1) KCSE (1) KJSE (1) Kapital Inteligence (1) Kenya education (1) Latex (1) Law (1) Limit (1) Logic (1) MBTI (1) Market Analysis. (1) Market pulse (1) Mathematical insights (1) Moby dick; ot The Whale (1) Montecarlo simulation (1) Motorcycle Taxi Rides (1) Mural (1) Nature Shape (1) Observed paterns (1) Olympiad (1) Open PS2 Loader (1) Outta Pharaoh hand (1) Physics (1) Predictions (1) Programing (1) Proof (1) Python Code (1) Quiz (1) Quotation (1) R programming (1) RAG (1) RL (1) Remove Duplicate Rows (1) Remove Rows with Missing Values (1) Replace Missing Values with Another Value (1) Risk Management (1) Safety (1) Science (1) Scientific method (1) Semantics (1) Statistical Modelling (1) Stochastic (1) Stock Markets (1) Stock price dynamics (1) Stock-Price (1) Stocks (1) Survey (1) Sustainable Agriculture (1) Symbols (1) Syntax (1) Taroch Coalition (1) The Nature of Mathematics (1) The safe way of science (1) Travel (1) Troubleshoting (1) Tsavo National park (1) Volatility (1) World time (1) Youtube Videos (1) analysis (1) and Belbin Insights (1) competency-based curriculum (1) conformal maps. (1) decisions (1) over-the-counter (OTC) markets (1) pedagogy (1) pi (1) power series (1) residues (1) stock exchange (1) uplifted (1)

Followers