Algebra and Logic in R Programming
Abstract: Algebra and logic form the backbone of computational systems. This interactive guide demonstrates how R can model and analyze algebraic structures and logical reasoning, with examples.
1. Basic Algebraic Operations
# Basic arithmetic operations
a <- 5 b <- 3 sum <- a + b product <- a * b cat("Sum:", sum, "\nProduct:", product)
2. Linear Algebra
Matrix Operations
# Matrix creation and operations
A <- matrix(c(1, 2, 3, 4), nrow=2, ncol=2) B <- matrix(c(5, 6, 7, 8), nrow=2, ncol=2) sum_matrix <- A + B product_matrix <- A %*% B inverse_A <- solve(A)
cat("Matrix A:\n"); print(A) cat("Matrix B:\n"); print(B) cat("Sum:\n"); print(sum_matrix) cat("Product:\n"); print(product_matrix) cat("Inverse A:\n"); print(inverse_A)
Solving Systems of Equations
Solving Ax = b using R:
A <- matrix(c(2, 1, -1, 3), nrow=2, ncol=2)
b <- c(8, 11) x <- solve(A, b) cat("Solution to Ax = b:", x)
3. Logic in R Programming
Boolean Logic
x <- TRUE
y <- FALSE cat("AND:", x & y, "\nOR:", x | y, "\nNOT x:", !x)
Conditional Statements
x <- 10
if (x > 0) { cat("x is positive\n") } else if (x < 0) { cat("x is negative\n") } else { cat("x is zero\n") }
Filtering Data
data <- data.frame(name=c("Alice", "Bob", "Charlie"), age=c(25, 30, 35))
filtered_data <- data[data$age > 28, ] print(filtered_data)
4. Combining Algebra and Logic
Optimization
library(lpSolve)
objective <- c(3, 4) constraints <- matrix(c(1, 1, 2, 1), nrow=2, byrow=TRUE) constraint_dir <- c("<=", "<=") constraint_rhs <- c(5, 8) result <- lp("max", objective, constraints, constraint_dir, constraint_rhs) cat("x =", result$solution[1], ", y =", result$solution[2], "\n") cat("Max value:", result$objval)
Symbolic Computation
library(Ryacas)
expr <- yac_str("x^2 + 2x + 1") simplified <- yac_str("Simplify(x^2 + 2x + 1)") cat("Expression:", expr, "\nSimplified:", simplified)
5. Interactive Plot Example (Graph Theory)
Install igraph and use the below code to plot a graph:
library(igraph)
g <- make_ring(5) plot(g)
Explore algebra and logic not only as cold equations but as vessels of truth and beauty, guiding the mind through structure and form, precision and purpose, through the enduring clarity of R.
No comments:
Post a Comment