R Programming Examples
Usin R environment on this website https://kapitals-pi.blogspot.com/p/learning-r-programming.html
Explore a variety of R code snippets showcasing data analysis, visualization, and more.
Basic R Operations & Visualizations
# Basic arithmetic and vector operations
numbers <- c(1, 2, 3, 4, 5)
mean_numbers <- mean(numbers)
print(paste("The mean of", toString(numbers), "is", mean_numbers))
# Simple histogram with base R
hist(iris$Sepal.Length,
main="Histogram of Sepal Length",
xlab="Sepal Length",
col="lightblue",
border="black")
# Using dplyr for data manipulation
library(dplyr)
mtcars %>%
group_by(cyl) %>%
summarise(avg_mpg = mean(mpg),
count = n()) %>%
print()
# Advanced ggplot2 visualization
library(ggplot2)
ggplot(data = diamonds, aes(x = carat, y = price, color = cut)) +
geom_point() +
theme_minimal() +
labs(title="Diamond Price vs Carat by Cut",
x="Carat",
y="Price")
# Linear regression example
model <- lm(mpg ~ wt + hp, data = mtcars)
summary(model)
# Creating a simple function
fibonacci <- function(n) {
if(n <= 1) return(n)
else return(fibonacci(n-1) + fibonacci(n-2))
}
print(sapply(1:10, fibonacci))
Demonstrates basic calculations, histogram plotting, data manipulation with dplyr, advanced plotting with ggplot2, statistical modeling, and custom function creation.
Advanced R Use Cases
# Creating a boxplot with base R
boxplot(mpg ~ cyl, data = mtcars,
main="MPG by Number of Cylinders",
xlab="Cylinders", ylab="Miles Per Gallon",
col="lightgreen", border="darkblue")
# Using tidyr and dplyr for data reshaping and analysis
library(tidyr)
library(dplyr)
airquality %>%
pivot_longer(cols = c(Ozone, Solar.R, Wind, Temp),
names_to = "Variable",
values_to = "Value") %>%
group_by(Variable) %>%
summarise(mean = mean(Value, na.rm = TRUE),
sd = sd(Value, na.rm = TRUE)) %>%
print()
# Interactive plot with plotly
library(plotly)
p <- plot_ly(data = iris,
x = ~Sepal.Length,
y = ~Sepal.Width,
color = ~Species,
type = "scatter",
mode = "markers") %>%
layout(title = "Iris Sepal Dimensions by Species")
p
# Time series analysis with ts and forecast
library(forecast)
airpass <- ts(AirPassengers, frequency = 12)
model <- auto.arima(airpass)
forecast <- forecast(model, h = 12)
plot(forecast, main="12-Month Forecast of Air Passengers")
# Creating a simple Shiny app
library(shiny)
ui <- fluidPage(
sliderInput("n", "Number of points", 10, 100, 50),
plotOutput("scatter")
)
server <- function(input, output) {
output$scatter <- renderPlot({
plot(rnorm(input$n), rnorm(input$n),
main="Random Scatter Plot",
xlab="X", ylab="Y", col="purple")
})
}
# Uncomment to run: shinyApp(ui, server)
# Matrix operations
A <- matrix(c(1, 2, 3, 4), nrow=2)
B <- matrix(c(5, 6, 7, 8), nrow=2)
matrix_product <- A %*% B
print("Matrix A:")
print(A)
print("Matrix B:")
print(B)
print("Matrix Product A*B:")
print(matrix_product)
Covers boxplot visualization, data reshaping with tidyr/dplyr, interactive plotting with plotly, time series forecasting, Shiny app structure, and matrix operations.
No comments:
Post a Comment