Mathematics of Transformers
Advanced Worked Example: Eigenvalues and Eigenvectors
This topic is crucial in various fields, including data science, physics, and engineering.
Problem: Finding Eigenvalues and Eigenvectors
Given the matrix:
\[ A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} \]
Find the eigenvalues and eigenvectors of \( A \).
Solution:
Step 1: Eigenvalue Equation
The eigenvalue equation is:
\[ A\mathbf{v} = \lambda\mathbf{v} \]
Rewriting, we get:
\[ (A - \lambda I)\mathbf{v} = 0 \]
Here:
- \( \lambda \) is the eigenvalue.
- \( I \) is the identity matrix.
For non-trivial solutions (\( \mathbf{v} \neq 0 \)), the determinant of \( A - \lambda I \) must be zero:
\[ \det(A - \lambda I) = 0 \]
Step 2: Characteristic Polynomial
Substitute \( A \) and \( I \) into \( \det(A - \lambda I) \):
\[ A - \lambda I = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{bmatrix} \]
The determinant is:
\[ \det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{vmatrix} \]
Use the determinant formula for a 2x2 matrix:
\[ \det(A - \lambda I) = (4 - \lambda)(3 - \lambda) - (2 \cdot 1) \]
Simplify:
\[ \det(A - \lambda I) = (4 - \lambda)(3 - \lambda) - 2 \]
\[ \det(A - \lambda I) = 12 - 4\lambda - 3\lambda + \lambda^2 - 2 \]
\[ \det(A - \lambda I) = \lambda^2 - 7\lambda + 10 \]
Step 3: Solve for Eigenvalues
Set \( \det(A - \lambda I) = 0 \):
\[ \lambda^2 - 7\lambda + 10 = 0 \]
Factorize:
\[ \lambda^2 - 7\lambda + 10 = (\lambda - 5)(\lambda - 2) \]
Thus, the eigenvalues are:
\[ \lambda_1 = 5, \quad \lambda_2 = 2 \]
Step 4: Find Eigenvectors
For each eigenvalue, solve \( (A - \lambda I)\mathbf{v} = 0 \).
For \( \lambda_1 = 5 \):
\[ A - \lambda_1 I = \begin{bmatrix} 4 - 5 & 1 \\ 2 & 3 - 5 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix} \]
Solve:
\[ \begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]
From the first row:
\[ -v_1 + v_2 = 0 \quad \Rightarrow \quad v_2 = v_1 \]
The eigenvector is:
\[ \mathbf{v}_1 = k \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad (k \text{ is any scalar}) \]
For \( \lambda_2 = 2 \):
\[ A - \lambda_2 I = \begin{bmatrix} 4 - 2 & 1 \\ 2 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \]
Solve:
\[ \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]
From the first row:
\[ 2v_1 + v_2 = 0 \quad \Rightarrow \quad v_2 = -2v_1 \]
The eigenvector is:
\[ \mathbf{v}_2 = k \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad (k \text{ is any scalar}) \]
Final Answer
Eigenvalues: \( \lambda_1 = 5, \lambda_2 = 2 \)
Eigenvectors: \( \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \)


No comments:
Post a Comment