Monday, January 06, 2025

x̄ - > Worked example of a matrix-related concept: Eigenvalues and Eigenvectors.

Mathematics of Transformers

Mathematics of Transformers

Advanced Worked Example: Eigenvalues and Eigenvectors

This topic is crucial in various fields, including data science, physics, and engineering.

Problem: Finding Eigenvalues and Eigenvectors

Given the matrix:

\[ A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} \]

Find the eigenvalues and eigenvectors of \( A \).

Solution:

Step 1: Eigenvalue Equation

The eigenvalue equation is:

\[ A\mathbf{v} = \lambda\mathbf{v} \]

Rewriting, we get:

\[ (A - \lambda I)\mathbf{v} = 0 \]

Here:

  • \( \lambda \) is the eigenvalue.
  • \( I \) is the identity matrix.

For non-trivial solutions (\( \mathbf{v} \neq 0 \)), the determinant of \( A - \lambda I \) must be zero:

\[ \det(A - \lambda I) = 0 \]

Step 2: Characteristic Polynomial

Substitute \( A \) and \( I \) into \( \det(A - \lambda I) \):

\[ A - \lambda I = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{bmatrix} \]

The determinant is:

\[ \det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{vmatrix} \]

Use the determinant formula for a 2x2 matrix:

\[ \det(A - \lambda I) = (4 - \lambda)(3 - \lambda) - (2 \cdot 1) \]

Simplify:

\[ \det(A - \lambda I) = (4 - \lambda)(3 - \lambda) - 2 \]

\[ \det(A - \lambda I) = 12 - 4\lambda - 3\lambda + \lambda^2 - 2 \]

\[ \det(A - \lambda I) = \lambda^2 - 7\lambda + 10 \]

Step 3: Solve for Eigenvalues

Set \( \det(A - \lambda I) = 0 \):

\[ \lambda^2 - 7\lambda + 10 = 0 \]

Factorize:

\[ \lambda^2 - 7\lambda + 10 = (\lambda - 5)(\lambda - 2) \]

Thus, the eigenvalues are:

\[ \lambda_1 = 5, \quad \lambda_2 = 2 \]

Step 4: Find Eigenvectors

For each eigenvalue, solve \( (A - \lambda I)\mathbf{v} = 0 \).

For \( \lambda_1 = 5 \):

\[ A - \lambda_1 I = \begin{bmatrix} 4 - 5 & 1 \\ 2 & 3 - 5 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix} \]

Solve:

\[ \begin{bmatrix} -1 & 1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

From the first row:

\[ -v_1 + v_2 = 0 \quad \Rightarrow \quad v_2 = v_1 \]

The eigenvector is:

\[ \mathbf{v}_1 = k \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad (k \text{ is any scalar}) \]

For \( \lambda_2 = 2 \):

\[ A - \lambda_2 I = \begin{bmatrix} 4 - 2 & 1 \\ 2 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \]

Solve:

\[ \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

From the first row:

\[ 2v_1 + v_2 = 0 \quad \Rightarrow \quad v_2 = -2v_1 \]

The eigenvector is:

\[ \mathbf{v}_2 = k \begin{bmatrix} 1 \\ -2 \end{bmatrix} \quad (k \text{ is any scalar}) \]

Final Answer

Eigenvalues: \( \lambda_1 = 5, \lambda_2 = 2 \)

Eigenvectors: \( \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix} \)

This work is licensed under a Creative Commons Attribution 4.0 International License.

No comments:

Meet the Authors
Zacharia Maganga’s blog features multiple contributors with clear activity status.
Active ✔
πŸ§‘‍πŸ’»
Zacharia Maganga
Lead Author
Active ✔
πŸ‘©‍πŸ’»
Linda Bahati
Co‑Author
Active ✔
πŸ‘¨‍πŸ’»
Jefferson Mwangolo
Co‑Author
Inactive ✖
πŸ‘©‍πŸŽ“
Florence Wavinya
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Esther Njeri
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Clemence Mwangolo
Guest Author

x̄ - > Bloomberg BS Model - King James Rodriguez Brazil 2014

Bloomberg BS Model - King James Rodriguez Brazil 2014 πŸ”Š Read ⏸ Pause ▶ Resume ⏹ Stop ⚽ The Silent Kin...

Labels

Data (3) Infographics (3) Mathematics (3) Sociology (3) Algebraic structure (2) Environment (2) Machine Learning (2) Sociology of Religion and Sexuality (2) kuku (2) #Mbele na Biz (1) #StopTheSpread (1) #stillamother #wantedchoosenplanned #bereavedmothersday #mothersday (1) #university#ai#mathematics#innovation#education#education #research#elearning #edtech (1) ( Migai Winter 2011) (1) 8-4-4 (1) AI Bubble (1) Accrual Accounting (1) Agriculture (1) Algebra (1) Algorithms (1) Amusement of mathematics (1) Analysis GDP VS employment growth (1) Analysis report (1) Animal Health (1) Applied AI Lab (1) Arithmetic operations (1) Black-Scholes (1) Bleu Ranger FC (1) Blockchain (1) CATS (1) CBC (1) Capital markets (1) Cash Accounting (1) Cauchy integral theorem (1) Coding theory. (1) Computer Science (1) Computer vision (1) Creative Commons (1) Cryptocurrency (1) Cryptography (1) Currencies (1) DISC (1) Data Analysis (1) Data Science (1) Decision-Making (1) Differential Equations (1) Economic Indicators (1) Economics (1) Education (1) Experimental design and sampling (1) Financial Data (1) Financial markets (1) Finite fields (1) Fractals (1) Free MCBoot (1) Funds (1) Future stock price (1) Galois fields (1) Game (1) Grants (1) Health (1) Hedging my bet (1) Holormophic (1) IS–LM (1) Indices (1) Infinite (1) Investment (1) KCSE (1) KJSE (1) Kapital Inteligence (1) Kenya education (1) Latex (1) Law (1) Limit (1) Logic (1) MBTI (1) Market Analysis. (1) Market pulse (1) Mathematical insights (1) Moby dick; ot The Whale (1) Montecarlo simulation (1) Motorcycle Taxi Rides (1) Mural (1) Nature Shape (1) Observed paterns (1) Olympiad (1) Open PS2 Loader (1) Outta Pharaoh hand (1) Physics (1) Predictions (1) Programing (1) Proof (1) Python Code (1) Quiz (1) Quotation (1) R programming (1) RAG (1) RL (1) Remove Duplicate Rows (1) Remove Rows with Missing Values (1) Replace Missing Values with Another Value (1) Risk Management (1) Safety (1) Science (1) Scientific method (1) Semantics (1) Statistical Modelling (1) Stochastic (1) Stock Markets (1) Stock price dynamics (1) Stock-Price (1) Stocks (1) Survey (1) Sustainable Agriculture (1) Symbols (1) Syntax (1) Taroch Coalition (1) The Nature of Mathematics (1) The safe way of science (1) Travel (1) Troubleshoting (1) Tsavo National park (1) Volatility (1) World time (1) Youtube Videos (1) analysis (1) and Belbin Insights (1) competency-based curriculum (1) conformal maps. (1) decisions (1) over-the-counter (OTC) markets (1) pedagogy (1) pi (1) power series (1) residues (1) stock exchange (1) uplifted (1)

Followers