Climate Science Simulation Summary
Here’s a sample dataset generated using two core climate science formulas:
1. Equilibrium Temperature (T)
Calculated using:
\[ T = \left( \frac{S (1 - \alpha)}{4 \sigma} \right)^{1/4} \]
With typical values, Earth’s equilibrium temperature is approximately 254.6 K (without atmospheric greenhouse effects).
2. Radiative Forcing (ΞF)
Increases with higher CO₂ levels:
\[ \Delta F = 5.35 \cdot \ln\left(\frac{C}{C_0}\right) \]
Where \( C_0 = 280 \, \text{ppm} \) (pre-industrial) and \( C \) varies from 280 to 1000 ppm.
Python Code
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# Constants
sigma = 5.67e-8 # Stefan-Boltzmann constant (W/m^2K^4)
S = 1361 # Solar constant (W/m^2)
alpha = 0.3 # Earth's average albedo
C0 = 280 # Pre-industrial CO₂ concentration (ppm)
# Temperature formula: T = ((S(1 - Ξ±)) / (4Ο))^(1/4)
T_eq = ((S * (1 - alpha)) / (4 * sigma)) ** 0.25
# CO₂ concentration range
C_values = np.linspace(280, 1000, 100)
delta_F = 5.35 * np.log(C_values / C0)
# DataFrame
df = pd.DataFrame({
"CO2 Concentration (ppm)": C_values,
"Radiative Forcing ΞF (W/m²)": delta_F,
"Equilibrium Temperature T (K)": [T_eq] * len(C_values)
})
# Plotting
plt.figure(figsize=(8, 5))
plt.plot(C_values, delta_F, color='green')
plt.title('Radiative Forcing vs CO₂ Concentration')
plt.xlabel('CO₂ Concentration (ppm)')
plt.ylabel('Radiative Forcing ΞF (W/m²)')
plt.grid(True)
plt.tight_layout()
plt.show()
df.head()
Sample Data
| CO₂ (ppm) | ΞF (W/m²) | T (K) |
|---|---|---|
| 280.0 | 0.00 | 254.58 |
| 287.3 | 0.14 | 254.58 |
| 294.5 | 0.27 | 254.58 |
| 301.8 | 0.40 | 254.58 |
| 309.1 | 0.53 | 254.58 |
Simulate further scenarios with temperature changes.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License .

No comments:
Post a Comment