Tuesday, April 22, 2025

x̄ - > Core Equations in Climate Science

Climate Science Equations

Core Equations in Climate Science Simulation

1. Equilibrium Temperature of Earth

$$ T = \left( \frac{S(1 - \alpha)}{4\sigma} \right)^{1/4} $$

This formula gives the Earth's effective temperature without greenhouse gases, where:

  • S = Solar constant (W/m²)
  • \(\alpha\) = Earth's albedo (reflectivity)
  • \(\sigma\) = Stefan-Boltzmann constant

2. Radiative Forcing from CO₂

$$ \Delta F = 5.35 \cdot \ln\left(\frac{C}{C_0}\right) $$

This represents the change in radiative forcing (in W/m²) from increased CO₂ concentrations:

  • \(C\) = current CO₂ (ppm)
  • \(C_0\) = reference (pre-industrial) CO₂ = 280 ppm

3. Total Temperature Increase with Feedback

$$ \Delta T = \frac{\lambda \cdot (\Delta F_{CO_2} + \Delta F_{CH_4} + \Delta F_{N_2O})}{1 - f} $$

This formula shows the temperature response adjusted by feedback:

  • \(\lambda\) = climate sensitivity parameter (°C/W/m²)
  • \(f\) = net feedback factor (dimensionless)

Where individual contributions are:

$$ \Delta F_{CH_4} = 0.036 \cdot (\sqrt{CH_4} - \sqrt{CH_{4,0}}) $$ $$ \Delta F_{N_2O} = 0.12 \cdot (\sqrt{N_2O} - \sqrt{N_{2}O_{0}}) $$

These formulas encapsulate the delicate energy balance of our climate system.

Climate Science Equations

1. Earth's Equilibrium Temperature (Without Greenhouse Effect)

The Earth receives solar radiation:

$$ \text{Incoming power} = S \cdot \pi R^2 \cdot (1 - \alpha) $$

The Earth emits blackbody radiation:

$$ \text{Outgoing power} = \sigma T^4 \cdot 4\pi R^2 $$

At equilibrium:

$$ S(1 - \alpha) \cdot \pi R^2 = 4\pi R^2 \sigma T^4 \Rightarrow \frac{S(1 - \alpha)}{4\sigma} = T^4 \Rightarrow T = \left( \frac{S(1 - \alpha)}{4\sigma} \right)^{1/4} $$


2. Radiative Forcing from CO2

Empirically derived from spectral radiative transfer models (Myhre et al., 1998):

$$ \Delta F = 5.35 \cdot \ln \left( \frac{C}{C_0} \right) $$

Where:

  • \( C \): current CO₂ concentration (ppm)
  • \( C_0 \): reference (pre-industrial) CO₂ concentration

3. Total Temperature Increase with Feedback

Let:

  • \( \lambda \): climate sensitivity parameter (°C/W/m²)
  • \( f \): net feedback factor (dimensionless)

The feedback-amplified temperature response:

$$ \Delta T = \lambda \cdot \Delta F \cdot (1 + f + f^2 + \dots) $$

This is a geometric series:

$$ \sum_{n=0}^{\infty} f^n = \frac{1}{1 - f}, \quad \text{for } |f| < 1 $$

So:

$$ \Delta T = \frac{\lambda \cdot \Delta F}{1 - f} $$

With multi-gas forcing:

$$ \Delta T = \frac{\lambda \cdot (\Delta F_{\text{CO}_2} + \Delta F_{\text{CH}_4} + \Delta F_{\text{N}_2\text{O}})}{1 - f} $$

No comments:

Meet the Authors
Zacharia Maganga’s blog features multiple contributors with clear activity status.
Active ✔
πŸ§‘‍πŸ’»
Zacharia Maganga
Lead Author
Active ✔
πŸ‘©‍πŸ’»
Linda Bahati
Co‑Author
Active ✔
πŸ‘¨‍πŸ’»
Jefferson Mwangolo
Co‑Author
Inactive ✖
πŸ‘©‍πŸŽ“
Florence Wavinya
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Esther Njeri
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Clemence Mwangolo
Guest Author

x̄ - > Bloomberg BS Model - King James Rodriguez Brazil 2014

Bloomberg BS Model - King James Rodriguez Brazil 2014 πŸ”Š Read ⏸ Pause ▶ Resume ⏹ Stop ⚽ The Silent Kin...

Labels

Data (3) Infographics (3) Mathematics (3) Sociology (3) Algebraic structure (2) Environment (2) Machine Learning (2) Sociology of Religion and Sexuality (2) kuku (2) #Mbele na Biz (1) #StopTheSpread (1) #stillamother #wantedchoosenplanned #bereavedmothersday #mothersday (1) #university#ai#mathematics#innovation#education#education #research#elearning #edtech (1) ( Migai Winter 2011) (1) 8-4-4 (1) AI Bubble (1) Accrual Accounting (1) Agriculture (1) Algebra (1) Algorithms (1) Amusement of mathematics (1) Analysis GDP VS employment growth (1) Analysis report (1) Animal Health (1) Applied AI Lab (1) Arithmetic operations (1) Black-Scholes (1) Bleu Ranger FC (1) Blockchain (1) CATS (1) CBC (1) Capital markets (1) Cash Accounting (1) Cauchy integral theorem (1) Coding theory. (1) Computer Science (1) Computer vision (1) Creative Commons (1) Cryptocurrency (1) Cryptography (1) Currencies (1) DISC (1) Data Analysis (1) Data Science (1) Decision-Making (1) Differential Equations (1) Economic Indicators (1) Economics (1) Education (1) Experimental design and sampling (1) Financial Data (1) Financial markets (1) Finite fields (1) Fractals (1) Free MCBoot (1) Funds (1) Future stock price (1) Galois fields (1) Game (1) Grants (1) Health (1) Hedging my bet (1) Holormophic (1) IS–LM (1) Indices (1) Infinite (1) Investment (1) KCSE (1) KJSE (1) Kapital Inteligence (1) Kenya education (1) Latex (1) Law (1) Limit (1) Logic (1) MBTI (1) Market Analysis. (1) Market pulse (1) Mathematical insights (1) Moby dick; ot The Whale (1) Montecarlo simulation (1) Motorcycle Taxi Rides (1) Mural (1) Nature Shape (1) Observed paterns (1) Olympiad (1) Open PS2 Loader (1) Outta Pharaoh hand (1) Physics (1) Predictions (1) Programing (1) Proof (1) Python Code (1) Quiz (1) Quotation (1) R programming (1) RAG (1) RL (1) Remove Duplicate Rows (1) Remove Rows with Missing Values (1) Replace Missing Values with Another Value (1) Risk Management (1) Safety (1) Science (1) Scientific method (1) Semantics (1) Statistical Modelling (1) Stochastic (1) Stock Markets (1) Stock price dynamics (1) Stock-Price (1) Stocks (1) Survey (1) Sustainable Agriculture (1) Symbols (1) Syntax (1) Taroch Coalition (1) The Nature of Mathematics (1) The safe way of science (1) Travel (1) Troubleshoting (1) Tsavo National park (1) Volatility (1) World time (1) Youtube Videos (1) analysis (1) and Belbin Insights (1) competency-based curriculum (1) conformal maps. (1) decisions (1) over-the-counter (OTC) markets (1) pedagogy (1) pi (1) power series (1) residues (1) stock exchange (1) uplifted (1)

Followers