Core Equations in Climate Science Simulation
1. Equilibrium Temperature of Earth
$$ T = \left( \frac{S(1 - \alpha)}{4\sigma} \right)^{1/4} $$
This formula gives the Earth's effective temperature without greenhouse gases, where:
- S = Solar constant (W/m²)
- \(\alpha\) = Earth's albedo (reflectivity)
- \(\sigma\) = Stefan-Boltzmann constant
2. Radiative Forcing from CO₂
$$ \Delta F = 5.35 \cdot \ln\left(\frac{C}{C_0}\right) $$
This represents the change in radiative forcing (in W/m²) from increased CO₂ concentrations:
- \(C\) = current CO₂ (ppm)
- \(C_0\) = reference (pre-industrial) CO₂ = 280 ppm
3. Total Temperature Increase with Feedback
$$ \Delta T = \frac{\lambda \cdot (\Delta F_{CO_2} + \Delta F_{CH_4} + \Delta F_{N_2O})}{1 - f} $$
This formula shows the temperature response adjusted by feedback:
- \(\lambda\) = climate sensitivity parameter (°C/W/m²)
- \(f\) = net feedback factor (dimensionless)
Where individual contributions are:
These formulas encapsulate the delicate energy balance of our climate system.
1. Earth's Equilibrium Temperature (Without Greenhouse Effect)
The Earth receives solar radiation:
$$ \text{Incoming power} = S \cdot \pi R^2 \cdot (1 - \alpha) $$
The Earth emits blackbody radiation:
$$ \text{Outgoing power} = \sigma T^4 \cdot 4\pi R^2 $$
At equilibrium:
$$ S(1 - \alpha) \cdot \pi R^2 = 4\pi R^2 \sigma T^4 \Rightarrow \frac{S(1 - \alpha)}{4\sigma} = T^4 \Rightarrow T = \left( \frac{S(1 - \alpha)}{4\sigma} \right)^{1/4} $$
2. Radiative Forcing from CO2
Empirically derived from spectral radiative transfer models (Myhre et al., 1998):
$$ \Delta F = 5.35 \cdot \ln \left( \frac{C}{C_0} \right) $$
Where:
- \( C \): current CO₂ concentration (ppm)
- \( C_0 \): reference (pre-industrial) CO₂ concentration
3. Total Temperature Increase with Feedback
Let:
- \( \lambda \): climate sensitivity parameter (°C/W/m²)
- \( f \): net feedback factor (dimensionless)
The feedback-amplified temperature response:
$$ \Delta T = \lambda \cdot \Delta F \cdot (1 + f + f^2 + \dots) $$
This is a geometric series:
$$ \sum_{n=0}^{\infty} f^n = \frac{1}{1 - f}, \quad \text{for } |f| < 1 $$
So:
$$ \Delta T = \frac{\lambda \cdot \Delta F}{1 - f} $$
With multi-gas forcing:
$$ \Delta T = \frac{\lambda \cdot (\Delta F_{\text{CO}_2} + \Delta F_{\text{CH}_4} + \Delta F_{\text{N}_2\text{O}})}{1 - f} $$
No comments:
Post a Comment