Saturday, March 15, 2025

x̄ -> Exo Planetary dataset and graph using python

Python program that creates a planetary dataset for exoplanets, inspired by the image details of star types (A, B, F, G, K, M) and their characteristics:



```python

import pandas as pd


# Step 1: Define star and planet data

data = {

    "StarType": ["A", "B", "F", "G", "K", "M"],

    "Temperature_K": [10000, 15000, 7000, 5778, 4000, 3500],

    "StellarRadius_SolarRadii": [2.0, 5.0, 1.3, 1.0, 0.7, 0.5],

    "PlanetCount": [2, 1, 4, 8, 5, 3],  # Number of exoplanets discovered

    "AveragePlanetMass_JupiterMass": [3.0, 5.0, 0.8, 1.0, 0.5, 0.3],

    "AverageOrbitPeriod_Days": [300, 800, 200, 365, 100, 50]

}


# Step 2: Create the dataset

exoplanet_df = pd.DataFrame(data)


# Step 3: Save the dataset to a CSV file

exoplanet_df.to_csv("exoplanet_dataset.csv", index=False)


# Step 4: Display the dataset

print("Exoplanet Dataset:")

print(exoplanet_df)

```


### Dataset Description:

This program generates a dataset with the following columns:

- StarType: The type of star (A, B, F, G, K, M).

- Temperature_K: The average surface temperature of the star (Kelvin).

- StellarRadius_SolarRadii: The radius of the star in solar radii (relative to the sun's radius).

- PlanetCount: Number of exoplanets orbiting each star type.

- AveragePlanetMass_JupiterMass: Average mass of the planets (in Jupiter masses).

- AverageOrbitPeriod_Days: Average orbital period of planets (in Earth days).


### How It Works:

1. Creates a Python dictionary containing star and planet data.

2. Converts the dictionary into a Pandas DataFrame.

3. Saves the dataset as a CSV file (`exoplanet_dataset.csv`) for further analysis.

4. Prints the dataset for immediate viewing.  😊


# Import necessary libraries

import pandas as pd

import matplotlib.pyplot as plt


# Step 1: Load the dataset

# Replace 'exoplanet_data.csv' with the path to your dataset

try:

    data = pd.read_csv('exoplanet_data.csv')

except FileNotFoundError:

    print("Dataset not found. Please ensure 'exoplanet_data.csv' is in the same directory.")

    exit()


# Step 2: Explore the dataset

print(data.head())  # Display the first 5 rows of the dataset

print(data.info())  # Show information about the columns


# Step 3: Filter relevant columns (e.g., Star Type, Planet Mass, Orbit Period)

relevant_columns = ['StarType', 'PlanetMass', 'OrbitPeriod']

data = data[relevant_columns]


# Step 4: Data cleaning (remove rows with missing values)

data.dropna(inplace=True)


# Step 5: Visualize the data

# Scatter plot: Planet Mass vs Orbit Period

plt.figure(figsize=(10, 6))

scatter = plt.scatter(data['OrbitPeriod'], data['PlanetMass'], c=data['StarType'].astype('category').cat.codes, cmap='viridis')

plt.colorbar(scatter, label='Star Type (Encoded)')

plt.xlabel('Orbit Period (days)')

plt.ylabel('Planet Mass (Jupiter Mass)')

plt.title('Exoplanet Characteristics by Star Type')

plt.grid()

plt.show()


# Step 6: Basic Statistics

print("\nBasic Statistics:")

print(data.describe())


# Step 7: Grouping data by star type

grouped_data = data.groupby('StarType').mean()

print("\nAverage Planet Mass and Orbit Period by Star Type:")

print(grouped_data)


No comments:

Meet the Authors
Zacharia Maganga’s blog features multiple contributors with clear activity status.
Active ✔
πŸ§‘‍πŸ’»
Zacharia Maganga
Lead Author
Active ✔
πŸ‘©‍πŸ’»
Linda Bahati
Co‑Author
Active ✔
πŸ‘¨‍πŸ’»
Jefferson Mwangolo
Co‑Author
Inactive ✖
πŸ‘©‍πŸŽ“
Florence Wavinya
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Esther Njeri
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Clemence Mwangolo
Guest Author

x̄ - > Bloomberg BS Model - King James Rodriguez Brazil 2014

Bloomberg BS Model - King James Rodriguez Brazil 2014 πŸ”Š Read ⏸ Pause ▶ Resume ⏹ Stop ⚽ The Silent Kin...

Labels

Data (3) Infographics (3) Mathematics (3) Sociology (3) Algebraic structure (2) Environment (2) Machine Learning (2) Sociology of Religion and Sexuality (2) kuku (2) #Mbele na Biz (1) #StopTheSpread (1) #stillamother #wantedchoosenplanned #bereavedmothersday #mothersday (1) #university#ai#mathematics#innovation#education#education #research#elearning #edtech (1) ( Migai Winter 2011) (1) 8-4-4 (1) AI Bubble (1) Accrual Accounting (1) Agriculture (1) Algebra (1) Algorithms (1) Amusement of mathematics (1) Analysis GDP VS employment growth (1) Analysis report (1) Animal Health (1) Applied AI Lab (1) Arithmetic operations (1) Black-Scholes (1) Bleu Ranger FC (1) Blockchain (1) CATS (1) CBC (1) Capital markets (1) Cash Accounting (1) Cauchy integral theorem (1) Coding theory. (1) Computer Science (1) Computer vision (1) Creative Commons (1) Cryptocurrency (1) Cryptography (1) Currencies (1) DISC (1) Data Analysis (1) Data Science (1) Decision-Making (1) Differential Equations (1) Economic Indicators (1) Economics (1) Education (1) Experimental design and sampling (1) Financial Data (1) Financial markets (1) Finite fields (1) Fractals (1) Free MCBoot (1) Funds (1) Future stock price (1) Galois fields (1) Game (1) Grants (1) Health (1) Hedging my bet (1) Holormophic (1) IS–LM (1) Indices (1) Infinite (1) Investment (1) KCSE (1) KJSE (1) Kapital Inteligence (1) Kenya education (1) Latex (1) Law (1) Limit (1) Logic (1) MBTI (1) Market Analysis. (1) Market pulse (1) Mathematical insights (1) Moby dick; ot The Whale (1) Montecarlo simulation (1) Motorcycle Taxi Rides (1) Mural (1) Nature Shape (1) Observed paterns (1) Olympiad (1) Open PS2 Loader (1) Outta Pharaoh hand (1) Physics (1) Predictions (1) Programing (1) Proof (1) Python Code (1) Quiz (1) Quotation (1) R programming (1) RAG (1) RL (1) Remove Duplicate Rows (1) Remove Rows with Missing Values (1) Replace Missing Values with Another Value (1) Risk Management (1) Safety (1) Science (1) Scientific method (1) Semantics (1) Statistical Modelling (1) Stochastic (1) Stock Markets (1) Stock price dynamics (1) Stock-Price (1) Stocks (1) Survey (1) Sustainable Agriculture (1) Symbols (1) Syntax (1) Taroch Coalition (1) The Nature of Mathematics (1) The safe way of science (1) Travel (1) Troubleshoting (1) Tsavo National park (1) Volatility (1) World time (1) Youtube Videos (1) analysis (1) and Belbin Insights (1) competency-based curriculum (1) conformal maps. (1) decisions (1) over-the-counter (OTC) markets (1) pedagogy (1) pi (1) power series (1) residues (1) stock exchange (1) uplifted (1)

Followers