Method of Lagrange Multipliers
Steps to Apply the Method
1. Formulate the Lagrangian Function
The Lagrangian function \( \mathcal{L} \) is defined as:
\[ \mathcal{L}(x, y, z, \lambda) = f(x, y, z, \dots) - \lambda g(x, y, z, \dots) \] where:
- \( f(x, y, z, \dots) \) is the function to optimize,
- \( g(x, y, z, \dots) = 0 \) is the constraint,
- \( \lambda \) is the Lagrange multiplier.
2. Solve the System of Equations
Find the points where the gradient of \( \mathcal{L} \) is zero by solving:
\[ \nabla \mathcal{L} = 0 \] This expands into: \[ \nabla f(x, y, z, \dots) = \lambda \nabla g(x, y, z, \dots) \] and \[ g(x, y, z, \dots) = 0. \]
3. Identify the Critical Points
The solutions to the above system are the critical points. Evaluate \( f(x, y, z, \dots) \) at these points.
4. Compare Values
Compare the values of \( f(x, y, z, \dots) \) at all critical points to determine the maximum and/or minimum values.
Example
Let \( f(x, y) = x^2 + y^2 \) be the function to maximize/minimize, subject to the constraint \( g(x, y) = x + y - 1 = 0 \).
Step 1: Write the Lagrangian
\[ \mathcal{L}(x, y, \lambda) = x^2 + y^2 - \lambda (x + y - 1) \]
Step 2: Compute the Gradient
Find \( \nabla \mathcal{L} \) and set it to zero:
\[ \nabla \mathcal{L} = \left( \frac{\partial \mathcal{L}}{\partial x}, \frac{\partial \mathcal{L}}{\partial y}, \frac{\partial \mathcal{L}}{\partial \lambda} \right) = 0 \] This gives: \[ \frac{\partial \mathcal{L}}{\partial x} = 2x - \lambda = 0 \quad \Rightarrow \quad \lambda = 2x \] \[ \frac{\partial \mathcal{L}}{\partial y} = 2y - \lambda = 0 \quad \Rightarrow \quad \lambda = 2y \] \[ \frac{\partial \mathcal{L}}{\partial \lambda} = -(x + y - 1) = 0 \quad \Rightarrow \quad x + y = 1 \]
Step 3: Solve the System
From \( \lambda = 2x \) and \( \lambda = 2y \), we get \( 2x = 2y \), or \( x = y \). Substituting \( x = y \) into \( x + y = 1 \), we find \( x = y = \frac{1}{2} \).
Step 4: Evaluate \( f(x, y) \)
At \( (x, y) = \left(\frac{1}{2}, \frac{1}{2}\right) \): \[ f(x, y) = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}. \] Thus, the maximum value of \( f(x, y) \) subject to the constraint is \( \frac{1}{2} \).
No comments:
Post a Comment