Monday, September 09, 2024

x̄ - > Estimating the future value of an investment portfolio based on random market returns.

An example of Monte Carlo simulation, this time for a financial application: estimating the future value of an investment portfolio based on random market returns.



### Example: Estimating Future Value of an Investment Portfolio


In this scenario, we have an initial investment amount, and we want to simulate the future value of the portfolio over a period of time. We assume the annual returns follow a normal distribution based on historical data (mean return and standard deviation).


#### Steps:

1. Start with an initial investment amount.

2. Each year, apply a random return based on a normal distribution (defined by mean and standard deviation).

3. Repeat the process for multiple simulations (e.g., 10,000 simulations).

4. Analyze the distribution of future values to understand the risk and potential outcomes of the portfolio.


Here’s a Python implementation:


```python

import numpy as np

import matplotlib.pyplot as plt


def monte_carlo_investment_simulation(initial_investment, mean_return, std_dev, years, num_simulations):

    # Array to store final portfolio values

    final_values = []

    

    for _ in range(num_simulations):

        portfolio_value = initial_investment

        for _ in range(years):

            # Simulate random annual return based on normal distribution

            annual_return = np.random.normal(mean_return, std_dev)

            # Update portfolio value

            portfolio_value *= (1 + annual_return)

        final_values.append(portfolio_value)

    

    return np.array(final_values)


# Parameters for the simulation

initial_investment = 10000  # Initial investment

mean_return = 0.07          # 7% expected annual return

std_dev = 0.15              # 15% standard deviation in returns

years = 30                  # Investment duration in years

num_simulations = 10000     # Number of simulations


# Run the Monte Carlo simulation

final_portfolio_values = monte_carlo_investment_simulation(initial_investment, mean_return, std_dev, years, num_simulations)


# Plot the results

plt.hist(final_portfolio_values, bins=50, color='skyblue', edgecolor='black')

plt.title('Distribution of Portfolio Value after 30 Years')

plt.xlabel('Portfolio Value')

plt.ylabel('Frequency')

plt.show()


# Basic statistics of the outcomes

mean_value = np.mean(final_portfolio_values)

median_value = np.median(final_portfolio_values)

percentile_5 = np.percentile(final_portfolio_values, 5)

percentile_95 = np.percentile(final_portfolio_values, 95)


mean_value, median_value, percentile_5, percentile_95

```


#### Explanation:

1. Initial Investment: We start with a defined initial investment (`$10,000` in this example).

2. Return Simulation: For each year, we generate a random return using the normal distribution with a mean of 7% and a standard deviation of 15%.

3. Monte Carlo Simulations: We run multiple simulations (10,000) to estimate the range of possible future portfolio values.

4. Analysis: We plot the distribution of future portfolio values and calculate basic statistics (mean, median, 5th percentile, and 95th percentile) to understand the outcomes.


This Monte Carlo simulation provides insights into how the portfolio might perform over time under different market conditions.


EABL STORE



Editor: Zacharia Maganga Nyambu
Email:zachariamaganga@duck.com

No comments:

Meet the Authors
Zacharia Maganga’s blog features multiple contributors with clear activity status.
Active ✔
πŸ§‘‍πŸ’»
Zacharia Maganga
Lead Author
Active ✔
πŸ‘©‍πŸ’»
Linda Bahati
Co‑Author
Active ✔
πŸ‘¨‍πŸ’»
Jefferson Mwangolo
Co‑Author
Inactive ✖
πŸ‘©‍πŸŽ“
Florence Wavinya
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Esther Njeri
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Clemence Mwangolo
Guest Author

x̄ - > Bloomberg BS Model - King James Rodriguez Brazil 2014

Bloomberg BS Model - King James Rodriguez Brazil 2014 πŸ”Š Read ⏸ Pause ▶ Resume ⏹ Stop ⚽ The Silent Kin...

Labels

Data (3) Infographics (3) Mathematics (3) Sociology (3) Algebraic structure (2) Environment (2) Machine Learning (2) Sociology of Religion and Sexuality (2) kuku (2) #Mbele na Biz (1) #StopTheSpread (1) #stillamother #wantedchoosenplanned #bereavedmothersday #mothersday (1) #university#ai#mathematics#innovation#education#education #research#elearning #edtech (1) ( Migai Winter 2011) (1) 8-4-4 (1) AI Bubble (1) Accrual Accounting (1) Agriculture (1) Algebra (1) Algorithms (1) Amusement of mathematics (1) Analysis GDP VS employment growth (1) Analysis report (1) Animal Health (1) Applied AI Lab (1) Arithmetic operations (1) Black-Scholes (1) Bleu Ranger FC (1) Blockchain (1) CATS (1) CBC (1) Capital markets (1) Cash Accounting (1) Cauchy integral theorem (1) Coding theory. (1) Computer Science (1) Computer vision (1) Creative Commons (1) Cryptocurrency (1) Cryptography (1) Currencies (1) DISC (1) Data Analysis (1) Data Science (1) Decision-Making (1) Differential Equations (1) Economic Indicators (1) Economics (1) Education (1) Experimental design and sampling (1) Financial Data (1) Financial markets (1) Finite fields (1) Fractals (1) Free MCBoot (1) Funds (1) Future stock price (1) Galois fields (1) Game (1) Grants (1) Health (1) Hedging my bet (1) Holormophic (1) IS–LM (1) Indices (1) Infinite (1) Investment (1) KCSE (1) KJSE (1) Kapital Inteligence (1) Kenya education (1) Latex (1) Law (1) Limit (1) Logic (1) MBTI (1) Market Analysis. (1) Market pulse (1) Mathematical insights (1) Moby dick; ot The Whale (1) Montecarlo simulation (1) Motorcycle Taxi Rides (1) Mural (1) Nature Shape (1) Observed paterns (1) Olympiad (1) Open PS2 Loader (1) Outta Pharaoh hand (1) Physics (1) Predictions (1) Programing (1) Proof (1) Python Code (1) Quiz (1) Quotation (1) R programming (1) RAG (1) RL (1) Remove Duplicate Rows (1) Remove Rows with Missing Values (1) Replace Missing Values with Another Value (1) Risk Management (1) Safety (1) Science (1) Scientific method (1) Semantics (1) Statistical Modelling (1) Stochastic (1) Stock Markets (1) Stock price dynamics (1) Stock-Price (1) Stocks (1) Survey (1) Sustainable Agriculture (1) Symbols (1) Syntax (1) Taroch Coalition (1) The Nature of Mathematics (1) The safe way of science (1) Travel (1) Troubleshoting (1) Tsavo National park (1) Volatility (1) World time (1) Youtube Videos (1) analysis (1) and Belbin Insights (1) competency-based curriculum (1) conformal maps. (1) decisions (1) over-the-counter (OTC) markets (1) pedagogy (1) pi (1) power series (1) residues (1) stock exchange (1) uplifted (1)

Followers