Key trends and patterns:
High Values:
- The highest value recorded is 128.06 in April 2021.
- Other significant peaks include 76.57 in December 2020, 70.52 in March 2021, and 116.49 in May 2022.
Zero Values:
- There are several months with a value of 0, indicating no activity or measurement during those periods. Notable stretches of zero values include:
- November 2019, January 2020, April 2020, June 2020, and several months in 2022 and 2023.
- There are several months with a value of 0, indicating no activity or measurement during those periods. Notable stretches of zero values include:
Seasonal Trends:
- There seems to be a pattern of higher values towards the end of the year, particularly in the months of October, November, and December.
- The mid-year months (June, July, August) often show lower values or zeros.
Yearly Comparison:
- 2019-2020: Generally low values with occasional spikes (e.g., July 2020 with 66.69).
- 2020-2021: Significant increase in values, especially from November 2020 to April 2021.
- 2021-2022: High variability with peaks in September and October 2021.
- 2022-2023: Mostly low values with occasional spikes (e.g., March 2022 with 87.83).
The code to generate the graph.
import pandas as pd
import matplotlib.pyplot as plt
# Defining the data
data = {
"Date": [
'Nov-19', 'Dec-19', 'Jan-20', 'Feb-20', 'Mar-20', 'Apr-20', 'May-20', 'Jun-20', 'Jul-20', 'Aug-20',
'Sep-20', 'Oct-20', 'Nov-20', 'Dec-20', 'Jan-21', 'Feb-21', 'Mar-21', 'Apr-21', 'May-21', 'Jun-21',
'Jul-21', 'Aug-21', 'Sep-21', 'Oct-21', 'Nov-21', 'Dec-21', 'Jan-22', 'Feb-22', 'Mar-22', 'Apr-22',
'May-22', 'Jun-22', 'Jul-22', 'Aug-22', 'Sep-22', 'Oct-22', 'Nov-22', 'Dec-22', 'Jan-23', 'Feb-23',
'Mar-23', 'Apr-23', 'May-23', 'Jun-23', 'Jul-23', 'Aug-23', 'Sep-23', 'Oct-23'
],
"Value": [
0, 3.5, 0, 5.5, 5, 0, 5.9, 0, 66.69, 4.58, 7.25, 12.16, 42.54, 76.57, 7.73, 16.95, 70.52, 128.06,
24.45, 49.57, 19.37, 32.35, 86.63, 97.72, 3.49, 1, 0, 7.74, 87.83, 24.45, 116.49, 5.11, 0, 0, 0,
2.92, 0, 0, 1, 0, 0, 1.1, 0, 0, 3, 0, 0, 1.1
]
}
# Creating a DataFrame
df = pd.DataFrame(data)
# Converting the Date column to datetime for better plotting
df['Date'] = pd.to_datetime(df['Date'], format='%b-%y')
# Plotting the data
plt.figure(figsize=(10, 6))
plt.plot(df['Date'], df['Value'], marker='o', linestyle='-', color='b')
plt.title('Monthly Data (Nov 2019 - Oct 2023)', fontsize=14)
plt.xlabel('Date', fontsize=12)
plt.ylabel('Value', fontsize=12)
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
# Show plot
plt.show()


No comments:
Post a Comment