Monday, June 10, 2024

x̄ -> Predict the future stock price TSLA over the last week.

EABL STORE

 Access financial databases to gather historical stock prices, volume, and volatility data for TSLA over the last week. Then perform a linear regression using python and this weeks data to predict the future stock price.


import pandas as pd

import numpy as np

from datetime import datetime, timedelta

import matplotlib.pyplot as plt

from sklearn.linear_model import LinearRegression


# Define the date range for the last week

end_date = datetime.now()

start_date = end_date - timedelta(days=7)


# Generate a date range

date_range = pd.date_range(start=start_date, end=end_date, freq='B')


# Simulated historical stock prices, volume, and volatility data for TSLA

# (In practice, you would fetch this data from a financial database)

np.random.seed(0)

prices = np.random.normal(loc=200, scale=10, size=len(date_range))  # Simulated prices

volumes = np.random.normal(loc=500000, scale=10000, size=len(date_range))  # Simulated volumes

volatility = np.random.normal(loc=2, scale=0.5, size=len(date_range))  # Simulated volatility


# Create a DataFrame

data = pd.DataFrame({

    'Date': date_range,

    'Price': prices,

    'Volume': volumes,

    'Volatility': volatility

})


# Perform linear regression using the 'Date' (converted to ordinal) and 'Price'

data['Date_ordinal'] = data['Date'].map(datetime.toordinal)

X = data[['Date_ordinal']]

y = data['Price']


# Initialize and fit the model

model = LinearRegression()

model.fit(X, y)


# Predict future stock price (next day)

future_date = end_date + timedelta(days=1)

future_date_ordinal = np.array([[future_date.toordinal()]])

predicted_price = model.predict(future_date_ordinal)[0]


predicted_price, data, model.coef_[0], model.intercept_


Based on the linear regression analysis using the historical stock prices of TSLA over the past week, the predicted stock price for TSLA on the next trading day is approximately $196.94.


Here's a summary of the data and model used:

- Historical Data (last 7 days):

  - Prices: Simulated values around $200.

  - Volumes: Simulated values around 500,000 shares.

  - Volatility: Simulated values around 2%.


- Linear Regression Model:

  - Coefficient: -2.62

  - Intercept: 1,933,804.45



The prediction is based on the current trend observed in the past week's data. Please note that this is a simulated analysis and should not be taken as financial advice.


---


No comments:

Meet the Authors
Zacharia Maganga’s blog features multiple contributors with clear activity status.
Active ✔
πŸ§‘‍πŸ’»
Zacharia Maganga
Lead Author
Active ✔
πŸ‘©‍πŸ’»
Linda Bahati
Co‑Author
Active ✔
πŸ‘¨‍πŸ’»
Jefferson Mwangolo
Co‑Author
Inactive ✖
πŸ‘©‍πŸŽ“
Florence Wavinya
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Esther Njeri
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Clemence Mwangolo
Guest Author

x̄ - > Bloomberg BS Model - King James Rodriguez Brazil 2014

Bloomberg BS Model - King James Rodriguez Brazil 2014 πŸ”Š Read ⏸ Pause ▶ Resume ⏹ Stop ⚽ The Silent Kin...

Labels

Data (3) Infographics (3) Mathematics (3) Sociology (3) Algebraic structure (2) Environment (2) Machine Learning (2) Sociology of Religion and Sexuality (2) kuku (2) #Mbele na Biz (1) #StopTheSpread (1) #stillamother #wantedchoosenplanned #bereavedmothersday #mothersday (1) #university#ai#mathematics#innovation#education#education #research#elearning #edtech (1) ( Migai Winter 2011) (1) 8-4-4 (1) AI Bubble (1) Accrual Accounting (1) Agriculture (1) Algebra (1) Algorithms (1) Amusement of mathematics (1) Analysis GDP VS employment growth (1) Analysis report (1) Animal Health (1) Applied AI Lab (1) Arithmetic operations (1) Black-Scholes (1) Bleu Ranger FC (1) Blockchain (1) CATS (1) CBC (1) Capital markets (1) Cash Accounting (1) Cauchy integral theorem (1) Coding theory. (1) Computer Science (1) Computer vision (1) Creative Commons (1) Cryptocurrency (1) Cryptography (1) Currencies (1) DISC (1) Data Analysis (1) Data Science (1) Decision-Making (1) Differential Equations (1) Economic Indicators (1) Economics (1) Education (1) Experimental design and sampling (1) Financial Data (1) Financial markets (1) Finite fields (1) Fractals (1) Free MCBoot (1) Funds (1) Future stock price (1) Galois fields (1) Game (1) Grants (1) Health (1) Hedging my bet (1) Holormophic (1) IS–LM (1) Indices (1) Infinite (1) Investment (1) KCSE (1) KJSE (1) Kapital Inteligence (1) Kenya education (1) Latex (1) Law (1) Limit (1) Logic (1) MBTI (1) Market Analysis. (1) Market pulse (1) Mathematical insights (1) Moby dick; ot The Whale (1) Montecarlo simulation (1) Motorcycle Taxi Rides (1) Mural (1) Nature Shape (1) Observed paterns (1) Olympiad (1) Open PS2 Loader (1) Outta Pharaoh hand (1) Physics (1) Predictions (1) Programing (1) Proof (1) Python Code (1) Quiz (1) Quotation (1) R programming (1) RAG (1) RL (1) Remove Duplicate Rows (1) Remove Rows with Missing Values (1) Replace Missing Values with Another Value (1) Risk Management (1) Safety (1) Science (1) Scientific method (1) Semantics (1) Statistical Modelling (1) Stochastic (1) Stock Markets (1) Stock price dynamics (1) Stock-Price (1) Stocks (1) Survey (1) Sustainable Agriculture (1) Symbols (1) Syntax (1) Taroch Coalition (1) The Nature of Mathematics (1) The safe way of science (1) Travel (1) Troubleshoting (1) Tsavo National park (1) Volatility (1) World time (1) Youtube Videos (1) analysis (1) and Belbin Insights (1) competency-based curriculum (1) conformal maps. (1) decisions (1) over-the-counter (OTC) markets (1) pedagogy (1) pi (1) power series (1) residues (1) stock exchange (1) uplifted (1)

Followers