Sunday, June 25, 2023

x̄ - > Advanced data analysis with risk identification R

 To perform advanced data analysis with risk identification, you can use various statistical and machine learning techniques in R. Here's an example case study with R code that demonstrates risk identification using logistic regression:


Case Study: Loan Default Prediction


1. Data Preparation:

   - Obtain a dataset containing information about loan applicants, including various features such as credit score, income, employment status, loan amount, etc.

   - Split the dataset into a training set and a test set.


2. Data Exploration:

   - Load the necessary packages:

     ```R

     library(dplyr)

     library(ggplot2)

     library(corrplot)

     ```


   - Explore the dataset by examining its structure and summary statistics:

     ```R

     # Load the dataset

     loan_data <- read.csv("loan_data.csv")


     # Overview of the dataset

     str(loan_data)

     summary(loan_data)

     ```


   - Visualize the relationships between variables and identify potential risk factors:

     ```R

     # Create a correlation matrix

     cor_matrix <- cor(loan_data[, c("CreditScore", "Income", "LoanAmount", "Default")])


     # Plot a correlation heatmap

     corrplot(cor_matrix, method = "color", type = "upper")

     ```


3. Data Preprocessing:

   - Handle missing values and outliers:

     ```R

     # Replace missing values with appropriate imputation techniques

     loan_data$CreditScore[is.na(loan_data$CreditScore)] <- mean(loan_data$CreditScore, na.rm = TRUE)


     # Identify and handle outliers

     outlier_threshold <- quantile(loan_data$LoanAmount, c(0.01, 0.99))

     loan_data$LoanAmount[loan_data$LoanAmount < outlier_threshold[1]] <- outlier_threshold[1]

     loan_data$LoanAmount[loan_data$LoanAmount > outlier_threshold[2]] <- outlier_threshold[2]

     ```


   - Encode categorical variables:

     ```R

     # Convert categorical variables into factors

     loan_data$EmploymentStatus <- as.factor(loan_data$EmploymentStatus)

     ```


FLASH SALES

4. Model Development - Logistic Regression:

   - Split the data into a training set and a test set:

     ```R

     set.seed(123)

     train_indices <- sample(1:nrow(loan_data), 0.7 * nrow(loan_data))

     train_data <- loan_data[train_indices, ]

     test_data <- loan_data[-train_indices, ]

     ```


   - Train a logistic regression model:

     ```R

     # Build the logistic regression model

     model <- glm(Default ~ ., data = train_data, family = "binomial")


     # View the model summary

     summary(model)

     ```


5. Model Evaluation:

   - Predict on the test set and evaluate the model performance:

     ```R

     # Make predictions on the test set

     test_data$predicted_prob <- predict(model, newdata = test_data, type = "response")


     # Create a binary prediction based on a probability threshold

     threshold <- 0.5

     test_data$predicted_default <- ifelse(test_data$predicted_prob >= threshold, 1, 0)


     # Evaluate the model performance

     confusion_matrix <- table(test_data$Default, test_data$predicted_default)

     accuracy <- sum(diag(confusion_matrix)) / sum(confusion_matrix)

     precision <- confusion_matrix[2, 2] / sum(confusion_matrix[, 2])

     recall <- confusion_matrix[2, 2] / sum(confusion_matrix[2, ])

     f1_score <- 2 * precision * recall / (precision + recall

No comments:

Meet the Authors
Zacharia Maganga’s blog features multiple contributors with clear activity status.
Active ✔
πŸ§‘‍πŸ’»
Zacharia Maganga
Lead Author
Active ✔
πŸ‘©‍πŸ’»
Linda Bahati
Co‑Author
Active ✔
πŸ‘¨‍πŸ’»
Jefferson Mwangolo
Co‑Author
Inactive ✖
πŸ‘©‍πŸŽ“
Florence Wavinya
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Esther Njeri
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Clemence Mwangolo
Guest Author

x̄ - > Bloomberg BS Model - King James Rodriguez Brazil 2014

Bloomberg BS Model - King James Rodriguez Brazil 2014 πŸ”Š Read ⏸ Pause ▶ Resume ⏹ Stop ⚽ The Silent Kin...

Labels

Data (3) Infographics (3) Mathematics (3) Sociology (3) Algebraic structure (2) Environment (2) Machine Learning (2) Sociology of Religion and Sexuality (2) kuku (2) #Mbele na Biz (1) #StopTheSpread (1) #stillamother #wantedchoosenplanned #bereavedmothersday #mothersday (1) #university#ai#mathematics#innovation#education#education #research#elearning #edtech (1) ( Migai Winter 2011) (1) 8-4-4 (1) AI Bubble (1) Accrual Accounting (1) Agriculture (1) Algebra (1) Algorithms (1) Amusement of mathematics (1) Analysis GDP VS employment growth (1) Analysis report (1) Animal Health (1) Applied AI Lab (1) Arithmetic operations (1) Black-Scholes (1) Bleu Ranger FC (1) Blockchain (1) CATS (1) CBC (1) Capital markets (1) Cash Accounting (1) Cauchy integral theorem (1) Coding theory. (1) Computer Science (1) Computer vision (1) Creative Commons (1) Cryptocurrency (1) Cryptography (1) Currencies (1) DISC (1) Data Analysis (1) Data Science (1) Decision-Making (1) Differential Equations (1) Economic Indicators (1) Economics (1) Education (1) Experimental design and sampling (1) Financial Data (1) Financial markets (1) Finite fields (1) Fractals (1) Free MCBoot (1) Funds (1) Future stock price (1) Galois fields (1) Game (1) Grants (1) Health (1) Hedging my bet (1) Holormophic (1) IS–LM (1) Indices (1) Infinite (1) Investment (1) KCSE (1) KJSE (1) Kapital Inteligence (1) Kenya education (1) Latex (1) Law (1) Limit (1) Logic (1) MBTI (1) Market Analysis. (1) Market pulse (1) Mathematical insights (1) Moby dick; ot The Whale (1) Montecarlo simulation (1) Motorcycle Taxi Rides (1) Mural (1) Nature Shape (1) Observed paterns (1) Olympiad (1) Open PS2 Loader (1) Outta Pharaoh hand (1) Physics (1) Predictions (1) Programing (1) Proof (1) Python Code (1) Quiz (1) Quotation (1) R programming (1) RAG (1) RL (1) Remove Duplicate Rows (1) Remove Rows with Missing Values (1) Replace Missing Values with Another Value (1) Risk Management (1) Safety (1) Science (1) Scientific method (1) Semantics (1) Statistical Modelling (1) Stochastic (1) Stock Markets (1) Stock price dynamics (1) Stock-Price (1) Stocks (1) Survey (1) Sustainable Agriculture (1) Symbols (1) Syntax (1) Taroch Coalition (1) The Nature of Mathematics (1) The safe way of science (1) Travel (1) Troubleshoting (1) Tsavo National park (1) Volatility (1) World time (1) Youtube Videos (1) analysis (1) and Belbin Insights (1) competency-based curriculum (1) conformal maps. (1) decisions (1) over-the-counter (OTC) markets (1) pedagogy (1) pi (1) power series (1) residues (1) stock exchange (1) uplifted (1)

Followers