KCSE Mathematics — Paper 1 (2007) — Section II
Worked solutions: stepwise reasoning, clear conclusions, and exam-style presentation.
Q11Compound Interest and Growth (10 marks)
Find (1) the principal \(K\); (2) the amount after 5 years.
Show worked solution
- Recall compound interest formula: \(A=P(1+\frac{r}{100})^n\).
- Given \(A=14641,\ r=10,\ n=3\) so \(14641=P(1.1)^3=P(1.331)\).
- Thus \(P=\dfrac{14641}{1.331}=11000\). (Principal = Ksh 11,000)
- Amount after 5 years: \(A_5=11000(1.1)^5=11000(1.61051)\approx 17715.61\Rightarrow\) Ksh 17,716 (approx).
Final: Principal = Ksh 11,000. Amount after 5 years ≈ Ksh 17,716.
Q12Geometry — Circle Theorem & Chords (10 marks)
Show worked solution
- Intersecting chords theorem: \(AX\times BX=CX\times DX\).
- So \(4\times6=3\times DX\Rightarrow 24=3DX\Rightarrow DX=8\,cm.\)
- Since \(OD\perp CD\), \(OD\) bisects chord \(CD\). Thus \(CD=3+8=11\,cm\) and half-chord \(CM=5.5\,cm\).
- Radius: \(r^2=OM^2+CM^2=OM^2+(5.5)^2\). If more data (e.g. \(OX\) or \(OM\)) is provided, substitute to find numeric \(r\). Otherwise leave in terms of \(OM\).
Final: \(XD=8\,cm.\) Radius \(r=\sqrt{OM^2+5.5^2}\) (requires an additional distance to evaluate numerically).
Q13Simultaneous Equations — Quadratic & Linear (12 marks)
Show worked solution
- Substitute \(y=2x+3\) into \(x^2+y^2=65\): \(x^2+(2x+3)^2=65\).
- Expand: \(x^2+4x^2+12x+9=65\Rightarrow5x^2+12x-56=0\).
- Quadratic formula: \(x=\dfrac{-12\pm\sqrt{144+1120}}{10}=\dfrac{-12\pm\sqrt{1264}}{10}\). \(\sqrt{1264}\approx35.556\).
- Solutions: \(x\approx2.3556\Rightarrow y\approx7.7112;\quad x\approx-4.7556\Rightarrow y\approx-6.5112\).
Final: \((x,y)\approx(2.36,7.71)\) and \((-4.76,-6.51)\) (round as needed for marking).
Q14Trigonometry — Bearings & Distances (12 marks)
Show worked solution
- Angle between paths = 60° (east vs. N30°E). Use cosine rule: \(AB^2=100^2+100^2-2(100)(100)\cos60^\circ\).
- Compute: \(AB^2=20000-20000(0.5)=10000\Rightarrow AB=100\,km.\)
- Bearing from A: by symmetry the triangle is isosceles and the bearing of B from A is approximately N 30° E.
Final: Distance = 100 km. Bearing of B from A = N 30° E.
Q15Statistics — Frequency Distribution (12 marks)
Show worked solution
- Midpoints: 4.5, 14.5, 24.5, 34.5, 44.5, 54.5. Compute \(fx\) and sum: \(\Sigma f=40,\ \Sigma fx=1340\).
- Mean = \(\dfrac{1340}{40}=33.5\).
- Median: locate class containing the 20th value: cumulative freqs 2,6,14,26 so median class = 30–39. \(\text{Median}=L+\left(\dfrac{N/2-c.f_{before}}{f_m}\right)h\ =30+\dfrac{20-14}{12}\times10=35.\)
- Mode (grouped): \(L+\dfrac{f_1-f_0}{2f_1-f_0-f_2}\times h = 30+\dfrac{12-8}{24-8-10}\times10\approx36.7.\)
Final: Mean = 33.5; Median = 35; Mode ≈ 36.7.
Q16Mensuration — Frustum of a Cone (12 marks)
Show worked solution
- Volume: \(V=\dfrac{1}{3}\pi h(R^2+Rr+r^2)\). Substitute: \(=\dfrac{1}{3}\pi(12)(49+24.5+12.25)=343\pi\approx1078.7\,cm^3.\)
- Slant height \(l=\sqrt{h^2+(R-r)^2}=\sqrt{144+12.25}=12.5\,cm.\)
- Curved surface area \(=\pi(R+r)l=\pi(10.5)(12.5)=131.25\pi\approx412.3\,cm^2.\) Base and top areas \(=\pi(R^2+r^2)=61.25\pi\approx192.4\,cm^2.\)
- Total \(\approx412.3+192.4=604.7\,cm^2.\)
Final: Volume ≈ 1078.7 cm³; TSA ≈ 604.7 cm².
No comments:
Post a Comment