Sunday, February 11, 2024

x̄ - > Brownian motion and stochastic calculus concepts in finance

Brownian motion and stochastic calculus are fundamental concepts in finance, particularly in the modeling of asset prices and derivatives pricing. Below, I'll provide an example of simulating geometric Brownian motion (GBM) using R programming language and how it can be applied to model stock prices. We'll also include a brief demonstration of stochastic calculus in the context of option pricing using the Black-Scholes-Merton model.


```R

# Load required libraries

library(ggplot2)


# Parameters

S0 <- 100  # Initial stock price

mu <- 0.05 # Drift

sigma <- 0.2 # Volatility

dt <- 1/252 # Time step (daily)

T <- 1 # Time horizon (1 year)

N <- T/dt # Number of time steps

n_paths <- 5 # Number of simulated paths


# Function to simulate geometric Brownian motion

simulate_gbm <- function(S0, mu, sigma, dt, N, n_paths) {

  paths <- matrix(NA, nrow = N + 1, ncol = n_paths)

  paths[1,] <- S0

  for (i in 1:n_paths) {

    for (j in 2:(N + 1)) {

      paths[j, i] <- paths[j - 1, i] * exp((mu - 0.5 * sigma^2) * dt +

                                           sigma * sqrt(dt) * rnorm(1))

    }

  }

  return(paths)

}


# Simulate GBM paths

paths <- simulate_gbm(S0, mu, sigma, dt, N, n_paths)


# Plot simulated paths

ggplot() +

  geom_line(aes(x = 0:N * dt, y = paths), color = "blue") +

  labs(title = "Simulated Geometric Brownian Motion Paths",

       x = "Time",

       y = "Stock Price")

```


This code simulates multiple paths of a stock price process governed by geometric Brownian motion. Each path represents a potential evolution of the stock price over time.


Now, let's briefly demonstrate the application of stochastic calculus in finance, specifically in option pricing using the Black-Scholes-Merton model:


COMPUTING CATEGORY

```R

# Black-Scholes-Merton option pricing formula

bsm_call <- function(S0, K, T, r, sigma) {

  d1 <- (log(S0/K) + (r + 0.5 * sigma^2) * T) / (sigma * sqrt(T))

  d2 <- d1 - sigma * sqrt(T)

  C <- S0 * pnorm(d1) - K * exp(-r * T) * pnorm(d2)

  return(C)

}


# Parameters for option pricing

S0 <- 100  # Initial stock price

K <- 105   # Strike price

T <- 0.5   # Time to expiration (in years)

r <- 0.05  # Risk-free interest rate

sigma <- 0.2 # Volatility


# Calculate call option price

call_price <- bsm_call(S0, K, T, r, sigma)

print(paste("Black-Scholes-Merton Call Option Price:", round(call_price, 2)))

```


This code calculates the price of a European call option using the Black-Scholes-Merton formula. It takes into account the current stock price, strike price, time to expiration, risk-free interest rate, and volatility. This is just a basic demonstration; in practice, more sophisticated models and techniques are used for option pricing and risk management.

No comments:

Meet the Authors
Zacharia Maganga’s blog features multiple contributors with clear activity status.
Active ✔
πŸ§‘‍πŸ’»
Zacharia Maganga
Lead Author
Active ✔
πŸ‘©‍πŸ’»
Linda Bahati
Co‑Author
Active ✔
πŸ‘¨‍πŸ’»
Jefferson Mwangolo
Co‑Author
Inactive ✖
πŸ‘©‍πŸŽ“
Florence Wavinya
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Esther Njeri
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Clemence Mwangolo
Guest Author

x̄ - > Bloomberg BS Model - King James Rodriguez Brazil 2014

Bloomberg BS Model - King James Rodriguez Brazil 2014 πŸ”Š Read ⏸ Pause ▶ Resume ⏹ Stop ⚽ The Silent Kin...

Labels

Data (3) Infographics (3) Mathematics (3) Sociology (3) Algebraic structure (2) Environment (2) Machine Learning (2) Sociology of Religion and Sexuality (2) kuku (2) #Mbele na Biz (1) #StopTheSpread (1) #stillamother #wantedchoosenplanned #bereavedmothersday #mothersday (1) #university#ai#mathematics#innovation#education#education #research#elearning #edtech (1) ( Migai Winter 2011) (1) 8-4-4 (1) AI Bubble (1) Accrual Accounting (1) Agriculture (1) Algebra (1) Algorithms (1) Amusement of mathematics (1) Analysis GDP VS employment growth (1) Analysis report (1) Animal Health (1) Applied AI Lab (1) Arithmetic operations (1) Black-Scholes (1) Bleu Ranger FC (1) Blockchain (1) CATS (1) CBC (1) Capital markets (1) Cash Accounting (1) Cauchy integral theorem (1) Coding theory. (1) Computer Science (1) Computer vision (1) Creative Commons (1) Cryptocurrency (1) Cryptography (1) Currencies (1) DISC (1) Data Analysis (1) Data Science (1) Decision-Making (1) Differential Equations (1) Economic Indicators (1) Economics (1) Education (1) Experimental design and sampling (1) Financial Data (1) Financial markets (1) Finite fields (1) Fractals (1) Free MCBoot (1) Funds (1) Future stock price (1) Galois fields (1) Game (1) Grants (1) Health (1) Hedging my bet (1) Holormophic (1) IS–LM (1) Indices (1) Infinite (1) Investment (1) KCSE (1) KJSE (1) Kapital Inteligence (1) Kenya education (1) Latex (1) Law (1) Limit (1) Logic (1) MBTI (1) Market Analysis. (1) Market pulse (1) Mathematical insights (1) Moby dick; ot The Whale (1) Montecarlo simulation (1) Motorcycle Taxi Rides (1) Mural (1) Nature Shape (1) Observed paterns (1) Olympiad (1) Open PS2 Loader (1) Outta Pharaoh hand (1) Physics (1) Predictions (1) Programing (1) Proof (1) Python Code (1) Quiz (1) Quotation (1) R programming (1) RAG (1) RL (1) Remove Duplicate Rows (1) Remove Rows with Missing Values (1) Replace Missing Values with Another Value (1) Risk Management (1) Safety (1) Science (1) Scientific method (1) Semantics (1) Statistical Modelling (1) Stochastic (1) Stock Markets (1) Stock price dynamics (1) Stock-Price (1) Stocks (1) Survey (1) Sustainable Agriculture (1) Symbols (1) Syntax (1) Taroch Coalition (1) The Nature of Mathematics (1) The safe way of science (1) Travel (1) Troubleshoting (1) Tsavo National park (1) Volatility (1) World time (1) Youtube Videos (1) analysis (1) and Belbin Insights (1) competency-based curriculum (1) conformal maps. (1) decisions (1) over-the-counter (OTC) markets (1) pedagogy (1) pi (1) power series (1) residues (1) stock exchange (1) uplifted (1)

Followers