Saturday, January 20, 2024

x̄ - > Rate of return on assets (ROA) on a monthly and daily basis

 To calculate the rate of return on assets (ROA) on a monthly and daily basis for a specific stock using R programming, you can use historical stock price data. You can fetch the data from sources like Yahoo Finance using libraries such as `quantmod` or `tidyquant`. Below is a simplified example using the `tidyquant` library to fetch stock prices and calculate ROA:

```R # Install and load necessary libraries install.packages("tidyquant") library(tidyquant) # Define the stock symbol and time period stock_symbol <- "AAPL" start_date <- "2022-01-01" end_date <- Sys.Date() # Current date # Fetch historical stock prices from Yahoo Finance stock_data <- tq_get(stock_symbol, from = start_date, to = end_date) # Calculate daily returns stock_data <- tq_mutate(stock_data, daily_return = dailyReturn(Adjusted)) # Calculate monthly returns monthly_returns <- tq_transmute(stock_data, monthly_return = monthlyReturn(Adjusted, type = "log")) # Calculate ROA on a daily basis daily_roa <- mean(stock_data$daily_return, na.rm = TRUE) # Calculate ROA on a monthly basis monthly_roa <- mean(monthly_returns$monthly_return, na.rm = TRUE) # Print the results cat("Daily ROA:", daily_roa, "\n") cat("Monthly ROA:", monthly_roa, "\n") ``` In this example, we use the `tidyquant` library to fetch historical stock prices, calculate daily returns, and then aggregate them to monthly returns. Finally, we compute the average daily and monthly returns, which can be considered as estimates of the ROA. Note that this is a simple example, and in a real-world scenario, you may want to adjust for dividends, splits, and other corporate actions that can affect stock prices. Additionally, the calculated ROA based on stock price data may not fully represent the financial performance of a company, as ROA is typically calculated using financial statements.

# Install and load necessary libraries install.packages("quantmod") library(quantmod) # Function to fetch stock data from Yahoo Finance getStockData <- function(symbol, startDate, endDate) { stockData <- getSymbols(symbol, src = "yahoo", from = startDate, to = endDate, auto.assign = FALSE) return(stockData) } # Function to calculate monthly and daily rates calculateRates <- function(stockData) { monthlyReturn <- Return.calculate(stockData$Close, type = "monthly") * 100 dailyReturn <- Return.calculate(stockData$Close, type = "daily") * 100 # Assuming you want the latest rates latestMonthlyRate <- tail(monthlyReturn, 1) latestDailyRate <- tail(dailyReturn, 1) return(list(monthlyRate = latestMonthlyRate, dailyRate = latestDailyRate)) } # Example usage stockSymbol <- "AAPL" # Change to the desired stock symbol startDate <- "2023-01-01" # Replace with your desired start date endDate <- Sys.Date() # Use today's date as the end date # Fetch stock data stockData <- getStockData(stockSymbol, startDate, endDate) # Calculate rates rates <- calculateRates(stockData) # Print the rates cat("Latest Monthly Rate:", rates$monthlyRate, "%\n") cat("Latest Daily Rate:", rates$dailyRate, "%\n")

No comments:

Meet the Authors
Zacharia Maganga’s blog features multiple contributors with clear activity status.
Active ✔
πŸ§‘‍πŸ’»
Zacharia Maganga
Lead Author
Active ✔
πŸ‘©‍πŸ’»
Linda Bahati
Co‑Author
Active ✔
πŸ‘¨‍πŸ’»
Jefferson Mwangolo
Co‑Author
Inactive ✖
πŸ‘©‍πŸŽ“
Florence Wavinya
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Esther Njeri
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Clemence Mwangolo
Guest Author

x̄ - > Bloomberg BS Model - King James Rodriguez Brazil 2014

Bloomberg BS Model - King James Rodriguez Brazil 2014 πŸ”Š Read ⏸ Pause ▶ Resume ⏹ Stop ⚽ The Silent Kin...

Labels

Data (3) Infographics (3) Mathematics (3) Sociology (3) Algebraic structure (2) Environment (2) Machine Learning (2) Sociology of Religion and Sexuality (2) kuku (2) #Mbele na Biz (1) #StopTheSpread (1) #stillamother #wantedchoosenplanned #bereavedmothersday #mothersday (1) #university#ai#mathematics#innovation#education#education #research#elearning #edtech (1) ( Migai Winter 2011) (1) 8-4-4 (1) AI Bubble (1) Accrual Accounting (1) Agriculture (1) Algebra (1) Algorithms (1) Amusement of mathematics (1) Analysis GDP VS employment growth (1) Analysis report (1) Animal Health (1) Applied AI Lab (1) Arithmetic operations (1) Black-Scholes (1) Bleu Ranger FC (1) Blockchain (1) CATS (1) CBC (1) Capital markets (1) Cash Accounting (1) Cauchy integral theorem (1) Coding theory. (1) Computer Science (1) Computer vision (1) Creative Commons (1) Cryptocurrency (1) Cryptography (1) Currencies (1) DISC (1) Data Analysis (1) Data Science (1) Decision-Making (1) Differential Equations (1) Economic Indicators (1) Economics (1) Education (1) Experimental design and sampling (1) Financial Data (1) Financial markets (1) Finite fields (1) Fractals (1) Free MCBoot (1) Funds (1) Future stock price (1) Galois fields (1) Game (1) Grants (1) Health (1) Hedging my bet (1) Holormophic (1) IS–LM (1) Indices (1) Infinite (1) Investment (1) KCSE (1) KJSE (1) Kapital Inteligence (1) Kenya education (1) Latex (1) Law (1) Limit (1) Logic (1) MBTI (1) Market Analysis. (1) Market pulse (1) Mathematical insights (1) Moby dick; ot The Whale (1) Montecarlo simulation (1) Motorcycle Taxi Rides (1) Mural (1) Nature Shape (1) Observed paterns (1) Olympiad (1) Open PS2 Loader (1) Outta Pharaoh hand (1) Physics (1) Predictions (1) Programing (1) Proof (1) Python Code (1) Quiz (1) Quotation (1) R programming (1) RAG (1) RL (1) Remove Duplicate Rows (1) Remove Rows with Missing Values (1) Replace Missing Values with Another Value (1) Risk Management (1) Safety (1) Science (1) Scientific method (1) Semantics (1) Statistical Modelling (1) Stochastic (1) Stock Markets (1) Stock price dynamics (1) Stock-Price (1) Stocks (1) Survey (1) Sustainable Agriculture (1) Symbols (1) Syntax (1) Taroch Coalition (1) The Nature of Mathematics (1) The safe way of science (1) Travel (1) Troubleshoting (1) Tsavo National park (1) Volatility (1) World time (1) Youtube Videos (1) analysis (1) and Belbin Insights (1) competency-based curriculum (1) conformal maps. (1) decisions (1) over-the-counter (OTC) markets (1) pedagogy (1) pi (1) power series (1) residues (1) stock exchange (1) uplifted (1)

Followers