Friday, December 08, 2023

x̄ - > YouTube Streamer Analysis

YouTube Streamer Analysis

YouTube Streamer Analysis

Examining the dataset of the top 1000 YouTube streamers offers valuable insights into the platform's dynamics. The exploration commences with a thorough examination of the dataset, delving into its structure, variables, and identification of outliers. Through trend analysis, we unveil prevalent content categories and delve into the relationships between subscriber numbers and engagement metrics. The distribution of the audience by country sheds light on regional preferences. This analysis goes beyond mere statistics, incorporating performance metrics such as average subscribers and engagement rates to highlight variations across different content categories. Additionally, it delves into the realm of brand collaborations, identifying noteworthy partnerships. By pinpointing the top-performing content creators, this analysis provides a benchmark for success within the YouTube streaming landscape. In summary, it delivers a succinct yet all-encompassing overview of trends, audience behaviors, and success factors in the realm of YouTube streaming


# Load necessary libraries
library(tidyverse)
library(ggplot2)

# Load the dataset
youtube_data <- read.csv("your_dataset.csv")

# Explore the structure and summary of the dataset
str(youtube_data)
summary(youtube_data)

# Check for missing values
missing_values <- colSums(is.na(youtube_data))
print(missing_values)

# Identify outliers
# You can use different methods like boxplots, scatter plots, or statistical methods to identify outliers.

# Trend analysis
# Identify popular content categories
content_categories <- youtube_data %>% 
  group_by(ContentCategory) %>%
  summarise(average_subscribers = mean(Subscribers),
            average_engagement = mean(EngagementMetrics))

# Plot the trends
ggplot(content_categories, aes(x = ContentCategory, y = average_subscribers, fill = ContentCategory)) +
  geom_bar(stat = "identity") +
  labs(title = "Average Subscribers by Content Category",
       x = "Content Category",
       y = "Average Subscribers") +
  theme_minimal()

ggplot(content_categories, aes(x = ContentCategory, y = average_engagement, fill = ContentCategory)) +
  geom_bar(stat = "identity") +
  labs(title = "Average Engagement by Content Category",
       x = "Content Category",
       y = "Average Engagement") +
  theme_minimal()

# Correlation analysis
correlation_matrix <- cor(youtube_data[c("Subscribers", "EngagementMetrics")])
print(correlation_matrix)

# Audience distribution by country
audience_distribution <- youtube_data %>% 
  group_by(Country) %>%
  summarise(total_streamers = n())

# Plot audience distribution
ggplot(audience_distribution, aes(x = reorder(Country, -total_streamers), y = total_streamers)) +
  geom_bar(stat = "identity") +
  labs(title = "Audience Distribution by Country",
       x = "Country",
       y = "Total Streamers") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

# Performance metrics
performance_metrics <- youtube_data %>% 
  group_by(ContentCategory) %>%
  summarise(avg_subscribers = mean(Subscribers),
            avg_engagement = mean(EngagementMetrics),
            num_collaborations = sum(BrandCollaborations))

# Identify top-performing content creators
top_creators <- youtube_data %>% 
  arrange(desc(EngagementMetrics)) %>%
  slice(1:10)

# Print the top-performing content creators
print(top_creators)

 # Load necessary libraries
library(tidyverse)
library(ggplot2)
library(htmltools)

# Load the dataset
youtube_data <- read.csv("your_dataset.csv")

# ... (Your previous code for data analysis and visualization)

# Save plots as HTML files
subscribers_plot <- ggplot(content_categories, aes(x = ContentCategory, y = average_subscribers, fill = ContentCategory)) +
  geom_bar(stat = "identity") +
  labs(title = "Average Subscribers by Content Category",
       x = "Content Category",
       y = "Average Subscribers") +
  theme_minimal()

engagement_plot <- ggplot(content_categories, aes(x = ContentCategory, y = average_engagement, fill = ContentCategory)) +
  geom_bar(stat = "identity") +
  labs(title = "Average Engagement by Content Category",
       x = "Content Category",
       y = "Average Engagement") +
  theme_minimal()

audience_plot <- ggplot(audience_distribution, aes(x = reorder(Country, -total_streamers), y = total_streamers)) +
  geom_bar(stat = "identity") +
  labs(title = "Audience Distribution by Country",
       x = "Country",
       y = "Total Streamers") +
  theme_minimal() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

# Save plots as HTML files
subscribers_html <- html_print(subscribers_plot, background = "white")
engagement_html <- html_print(engagement_plot, background = "white")
audience_html <- html_print(audience_plot, background = "white")

# Save HTML files
writeLines(subscribers_html, "subscribers_plot.html")
writeLines(engagement_html, "engagement_plot.html")
writeLines(audience_html, "audience_plot.html")

   
YouTube Analysis Pie Chart

YouTube Analysis Pie Chart

No comments:

Meet the Authors
Zacharia Maganga’s blog features multiple contributors with clear activity status.
Active ✔
πŸ§‘‍πŸ’»
Zacharia Maganga
Lead Author
Active ✔
πŸ‘©‍πŸ’»
Linda Bahati
Co‑Author
Active ✔
πŸ‘¨‍πŸ’»
Jefferson Mwangolo
Co‑Author
Inactive ✖
πŸ‘©‍πŸŽ“
Florence Wavinya
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Esther Njeri
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Clemence Mwangolo
Guest Author

x̄ - > Bloomberg BS Model - King James Rodriguez Brazil 2014

Bloomberg BS Model - King James Rodriguez Brazil 2014 πŸ”Š Read ⏸ Pause ▶ Resume ⏹ Stop ⚽ The Silent Kin...

Labels

Data (3) Infographics (3) Mathematics (3) Sociology (3) Algebraic structure (2) Environment (2) Machine Learning (2) Sociology of Religion and Sexuality (2) kuku (2) #Mbele na Biz (1) #StopTheSpread (1) #stillamother #wantedchoosenplanned #bereavedmothersday #mothersday (1) #university#ai#mathematics#innovation#education#education #research#elearning #edtech (1) ( Migai Winter 2011) (1) 8-4-4 (1) AI Bubble (1) Accrual Accounting (1) Agriculture (1) Algebra (1) Algorithms (1) Amusement of mathematics (1) Analysis GDP VS employment growth (1) Analysis report (1) Animal Health (1) Applied AI Lab (1) Arithmetic operations (1) Black-Scholes (1) Bleu Ranger FC (1) Blockchain (1) CATS (1) CBC (1) Capital markets (1) Cash Accounting (1) Cauchy integral theorem (1) Coding theory. (1) Computer Science (1) Computer vision (1) Creative Commons (1) Cryptocurrency (1) Cryptography (1) Currencies (1) DISC (1) Data Analysis (1) Data Science (1) Decision-Making (1) Differential Equations (1) Economic Indicators (1) Economics (1) Education (1) Experimental design and sampling (1) Financial Data (1) Financial markets (1) Finite fields (1) Fractals (1) Free MCBoot (1) Funds (1) Future stock price (1) Galois fields (1) Game (1) Grants (1) Health (1) Hedging my bet (1) Holormophic (1) IS–LM (1) Indices (1) Infinite (1) Investment (1) KCSE (1) KJSE (1) Kapital Inteligence (1) Kenya education (1) Latex (1) Law (1) Limit (1) Logic (1) MBTI (1) Market Analysis. (1) Market pulse (1) Mathematical insights (1) Moby dick; ot The Whale (1) Montecarlo simulation (1) Motorcycle Taxi Rides (1) Mural (1) Nature Shape (1) Observed paterns (1) Olympiad (1) Open PS2 Loader (1) Outta Pharaoh hand (1) Physics (1) Predictions (1) Programing (1) Proof (1) Python Code (1) Quiz (1) Quotation (1) R programming (1) RAG (1) RL (1) Remove Duplicate Rows (1) Remove Rows with Missing Values (1) Replace Missing Values with Another Value (1) Risk Management (1) Safety (1) Science (1) Scientific method (1) Semantics (1) Statistical Modelling (1) Stochastic (1) Stock Markets (1) Stock price dynamics (1) Stock-Price (1) Stocks (1) Survey (1) Sustainable Agriculture (1) Symbols (1) Syntax (1) Taroch Coalition (1) The Nature of Mathematics (1) The safe way of science (1) Travel (1) Troubleshoting (1) Tsavo National park (1) Volatility (1) World time (1) Youtube Videos (1) analysis (1) and Belbin Insights (1) competency-based curriculum (1) conformal maps. (1) decisions (1) over-the-counter (OTC) markets (1) pedagogy (1) pi (1) power series (1) residues (1) stock exchange (1) uplifted (1)

Followers