Sunday, November 05, 2023

x̄ - > Global extrema, constrained optimisation and loca optimization

 


To find global extrema or the absolute maximum or minimum of a function in R, you can use optimization techniques. One common method is to use the `optimize()` function, which is part of the base R package. Here's an example of how to use it:


```R

# Define your function

my_function <- function(x) {

  return(x^2 - 4*x + 4)

}


# Find the minimum of the function

result <- optimize(my_function, interval = c(0, 5), maximum = FALSE)


# Print the result

cat("Minimum value is at x =", result$minimum, "with a function value of", result$objective, "\n")

```


In this example, we defined a simple quadratic function, and then we used `optimize()` to find the minimum within the specified interval `[0, 5]`. The `maximum = FALSE` argument tells the function to find the minimum.


You can adjust the `interval` parameter to set the range over which you want to search for the minimum. To find the maximum, set `maximum = TRUE`.


Keep in mind that this is a basic example, and more complex functions may require different optimization techniques and packages like `optim()` or specialized optimization libraries in R.


Constrained optimization involves finding extrema (minima or maxima) of a function while satisfying certain constraints. In R, you can achieve this using various optimization packages like `optim`, `nloptr`, or `constrOptim`. Here's a simple example using the `optim` function to maximize a function subject to a constraint:


```R

# Load necessary libraries

library(optimx)


# Define your objective function to maximize

objective_function <- function(x) {

  return(-(x[1] * x[2]))

}


# Define the constraint function

constraint_function <- function(x) {

  return(x[1]^2 + x[2]^2 - 1)  # Example constraint: x^2 + y^2 = 1

}


# Set initial values

initial_values <- c(0, 1)


# Find the maximum of the objective function subject to the constraint

result <- optimx(

  par = initial_values,

  fn = objective_function,

  gr = NULL,

  lower = c(-Inf, -Inf),  # Lower bounds for variables

  upper = c(Inf, Inf),    # Upper bounds for variables

  ui = matrix(1, nrow = 1),  # Matrix for inequality constraints

  ci = constraint_function  # Constraint function

)


# Print the result

cat("Maximum value is at (x, y) =", result$par, "with a function value of", -result$value, "\n")

```


In this example, we're maximizing the product of `x` and `y` subject to the constraint that `x^2 + y^2 = 1` (a circle in this case). The `optimx` function is used for optimization, and we set the constraint using the `ui` and `ci` parameters.


For visualizations, you can plot the objective function and the constraint to better understand the optimization process. Here's how to visualize the objective function and the constraint in 2D:


```R

# Create a grid of values for visualization

x_vals <- seq(-2, 2, by = 0.01)

y_vals <- seq(-2, 2, by = 0.01)

grid <- expand.grid(x = x_vals, y = y_vals)

z <- -objective_function(as.matrix(grid))


# Plot the objective function

contour(x = x_vals, y = y_vals, z = matrix(z, nrow = length(x_vals)), main = "Objective Function")


# Plot the constraint

curve(sqrt(1 - x^2), from = -1, to = 1, col = "red", lwd = 2, add = TRUE)

curve(-sqrt(1 - x^2), from = -1, to = 1, col = "red", lwd = 2, add = TRUE)

```


This code will create a contour plot of the objective function and overlay the constraint on it. You can modify the constraint and the visualization as needed for your specific problem.


Finding local extrema (minima or maxima) of a function in R can be done using optimization techniques like the `optimize` function, but you can also visualize the function to get a better understanding of where the extrema might be. Here's an example of how to find local extrema and create visualizations for a simple function:


```R

# Load necessary libraries

library(ggplot2)


# Define your function

my_function <- function(x) {

  return(x^3 - 3*x^2 + 2*x)

}


# Create a sequence of x values

x_vals <- seq(-1, 3, by = 0.01)

y_vals <- my_function(x_vals)


# Find local minimum

min_result <- optimize(my_function, interval = c(0, 3), maximum = FALSE)

cat("Local minimum is at x =", min_result$minimum, "with a function value of", min_result$objective, "\n")


# Find local maximum

max_result <- optimize(my_function, interval = c(0, 3), maximum = TRUE)

cat("Local maximum is at x =", max_result$minimum, "with a function value of", max_result$objective, "\n")


# Create a plot of the function

ggplot(data.frame(x = x_vals, y = y_vals), aes(x, y)) +

  geom_line() +

  geom_vline(xintercept = min_result$minimum, color = "red", linetype = "dashed") +

  geom_vline(xintercept = max_result$minimum, color = "blue", linetype = "dashed") +

  annotate("text", x = min_result$minimum, y = min_result$objective + 10, label = "Local Min", color = "red") +

  annotate("text", x = max_result$minimum, y = max_result$objective - 10, label = "Local Max", color = "blue") +

  labs(title = "Local Extrema of a Function") +

  theme_minimal()

```


In this example, we define a simple cubic function, find its local minimum and maximum using the `optimize` function within the interval [0, 3], and then create a visualization using `ggplot2`. The red and blue dashed lines indicate the positions of the local minimum and maximum, respectively.


You can adjust the function, interval, and visualization settings as needed for your specific problem.


No comments:

Meet the Authors
Zacharia Maganga’s blog features multiple contributors with clear activity status.
Active ✔
πŸ§‘‍πŸ’»
Zacharia Maganga
Lead Author
Active ✔
πŸ‘©‍πŸ’»
Linda Bahati
Co‑Author
Active ✔
πŸ‘¨‍πŸ’»
Jefferson Mwangolo
Co‑Author
Inactive ✖
πŸ‘©‍πŸŽ“
Florence Wavinya
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Esther Njeri
Guest Author
Inactive ✖
πŸ‘©‍πŸŽ“
Clemence Mwangolo
Guest Author

x̄ - > Bloomberg BS Model - King James Rodriguez Brazil 2014

Bloomberg BS Model - King James Rodriguez Brazil 2014 πŸ”Š Read ⏸ Pause ▶ Resume ⏹ Stop ⚽ The Silent Kin...

Labels

Data (3) Infographics (3) Mathematics (3) Sociology (3) Algebraic structure (2) Environment (2) Machine Learning (2) Sociology of Religion and Sexuality (2) kuku (2) #Mbele na Biz (1) #StopTheSpread (1) #stillamother #wantedchoosenplanned #bereavedmothersday #mothersday (1) #university#ai#mathematics#innovation#education#education #research#elearning #edtech (1) ( Migai Winter 2011) (1) 8-4-4 (1) AI Bubble (1) Accrual Accounting (1) Agriculture (1) Algebra (1) Algorithms (1) Amusement of mathematics (1) Analysis GDP VS employment growth (1) Analysis report (1) Animal Health (1) Applied AI Lab (1) Arithmetic operations (1) Black-Scholes (1) Bleu Ranger FC (1) Blockchain (1) CATS (1) CBC (1) Capital markets (1) Cash Accounting (1) Cauchy integral theorem (1) Coding theory. (1) Computer Science (1) Computer vision (1) Creative Commons (1) Cryptocurrency (1) Cryptography (1) Currencies (1) DISC (1) Data Analysis (1) Data Science (1) Decision-Making (1) Differential Equations (1) Economic Indicators (1) Economics (1) Education (1) Experimental design and sampling (1) Financial Data (1) Financial markets (1) Finite fields (1) Fractals (1) Free MCBoot (1) Funds (1) Future stock price (1) Galois fields (1) Game (1) Grants (1) Health (1) Hedging my bet (1) Holormophic (1) IS–LM (1) Indices (1) Infinite (1) Investment (1) KCSE (1) KJSE (1) Kapital Inteligence (1) Kenya education (1) Latex (1) Law (1) Limit (1) Logic (1) MBTI (1) Market Analysis. (1) Market pulse (1) Mathematical insights (1) Moby dick; ot The Whale (1) Montecarlo simulation (1) Motorcycle Taxi Rides (1) Mural (1) Nature Shape (1) Observed paterns (1) Olympiad (1) Open PS2 Loader (1) Outta Pharaoh hand (1) Physics (1) Predictions (1) Programing (1) Proof (1) Python Code (1) Quiz (1) Quotation (1) R programming (1) RAG (1) RL (1) Remove Duplicate Rows (1) Remove Rows with Missing Values (1) Replace Missing Values with Another Value (1) Risk Management (1) Safety (1) Science (1) Scientific method (1) Semantics (1) Statistical Modelling (1) Stochastic (1) Stock Markets (1) Stock price dynamics (1) Stock-Price (1) Stocks (1) Survey (1) Sustainable Agriculture (1) Symbols (1) Syntax (1) Taroch Coalition (1) The Nature of Mathematics (1) The safe way of science (1) Travel (1) Troubleshoting (1) Tsavo National park (1) Volatility (1) World time (1) Youtube Videos (1) analysis (1) and Belbin Insights (1) competency-based curriculum (1) conformal maps. (1) decisions (1) over-the-counter (OTC) markets (1) pedagogy (1) pi (1) power series (1) residues (1) stock exchange (1) uplifted (1)

Followers